A variety of compounds, including the selective estrogen receptor (ER) modulators tamoxifen and raloxifene, phytoestrogens such as genistein, and xenoestrogens such as bisphenol, bind to the estrogen receptor and elicit biological responses. Structural studies have linked the altered activity of compounds such as 4-hydroxytamoxifen, raloxifene, genistein, and tetrahydrochrysene, which have substantially different structures from estradiol (E2), to differences in the positioning of the critical "helix 12" within the ligand-binding domain (LBD) of the ER-ligand complex. However, subtle permutations of the E2 molecule would also be expected to modulate the pattern of responses within a cell. Forty-two ligands were constructed by the addition or relocation of double bonds, hydroxyl, keto, amino, and nitro substituents throughout the estra-l,3,5(10)-triene (estratriene) ring system. In this review, we summarize the effects of subtle changes in the estratriene molecule on the ability of the receptor complex to stimulate the growth of MCF-7 cells, or affect the expression of four estrogen-regulated genes (progesterone receptor, pS2 protein, cathepsin D, and tissue plasminogen activator), as well as undergo nuclear processing and downregulate ERalpha mRNA. The affinity of these ligands for, and mechanism of their binding with, the ERalpha have been measured, along with their effect on the conformation of the ER-ERE complex. In particular, two A-ring isomers of E2, 2- and 4-hydroxyestratriene-17beta-ol, display gene selective activity within MCF-7 cells which is dependent on complex endogenous promoters, an intact AF-2 and is sensitive to the level of SRC-1. Both of these A-ring isomers function as antiestrogens. Molecular modeling of these two A-ring isomers complexed with the ER ligand-binding domain supports the idea that the conformation of the LBD is affected by subtle changes in the estratriene structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2004.03.014DOI Listing

Publication Analysis

Top Keywords

mcf-7 cells
12
a-ring isomers
12
estrogen receptor
8
ligand-binding domain
8
subtle changes
8
changes estratriene
8
ligand structure
4
structure biological
4
biological activity
4
activity modified
4

Similar Publications

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Introduction: Breast cancer is one of the most common cancers in women and poses a serious threat to women's health. Circular RNAs (circRNAs) have been found to be specifically expressed in cancers and regulate the growth and death of tumor cells. The role of circRNAs in breast cancer remain unknown.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Introduction: This study investigated the tryptic hydrolysis of β-lactoglobulin (BLG) for 30, 60, 90, and 120 min at 1/200 E/S (enzyme/substrate ratio, w/w) to prepare potentially anticarcinogenic peptides.

Methods: The properties of hydrolysates were characterized, including degree of hydrolysis, free amino acids, SDS-PAGE, FTIR, and antioxidant activity employing DPPH-assay, β-carotene/linoleic acid, and FRAP assay.

Results: BLG tryptic hydrolysate produced after 60 min hydrolysis recorded the highest antioxidant activity, and LCMS analysis revealed 162 peptides of molecular masses ranging from 800 to 5671Da, most of them are of hydrophobic nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!