Molecular screening for GJB2 (connexin 26) mutations represents the standard diagnostic approach for the genotype definition of non-syndromic deafness. Nevertheless, a single GJB2 pathogenic mutation is detectable in a relevant number of cases, therefore failing to explain the phenotype. We aimed at assessing the occurrence of the recently described del(GIB6-D13S1830) mutation, occurring in the connexin 30 gene, in a group of Italian hearing-impaired patients carrying a single GJB2 mutated allele. A total of 59 non-syndromic hearing loss (NSHL) patients were screened for GJB2 mutations. Among these, nine NSHL patients were found to be heterozygous for a single GJB2 mutation. These patients, heterozygotes for different GJB2 mutated alleles (35delG, L90P, M34T, V153I), together with 11 additional 35delG/neg cases previously described, were studied for the presence of the del(GIB6-D13S1830) mutation. Two double heterozygotes del(GIB6-D13S1830)/35delG were identified. In both cases the degree of hearing loss was profound. Furthermore, GJB2 molecular screening led to the identification of a novel change (T55G) occurring in compound heterozygosity with the V37I mutation. In conclusion, our data suggest a significant frequency of del(GIB6-D13S1830) mutation in Italian hearing-impaired subjects (10% of unexplained GJB2 heterozygotes) similar to that reported in other European countries.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03655230410017166DOI Listing

Publication Analysis

Top Keywords

delgib6-d13s1830 mutation
16
single gjb2
16
hearing loss
12
gjb2 mutated
12
gjb2
9
mutation italian
8
non-syndromic hearing
8
patients carrying
8
carrying single
8
mutated allele
8

Similar Publications

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!