Background: Detection of brain injury by serum markers is not a standard procedure in clinical practice, although several proteins, such as S100B, neuron-specific enolase (NSE), myelin basic protein, and glial fibrillary acidic protein, show promising results. We investigated the tissue distribution of brain- and heart-type fatty acid-binding proteins (B-FABP and H-FABP) in segments of the human brain and the potential of either protein to serve as plasma marker for diagnosis of brain injury.
Methods: B-FABP and H-FABP were measured immunochemically in autopsy samples of the brain (n = 6) and in serum samples from (a) patients with mild traumatic brain injury (MTBI; n = 130) and (b) depressed patients undergoing bilateral electroconvulsive therapy (ECT; n = 14). The protein markers S100B and NSE were measured for comparison. Reference values of B-FABP and H-FABP were established in healthy individuals (n = 92).
Results: The frontal, temporal, and occipital lobes, the striatum, the pons, and the cerebellum had different tissue concentrations of B-FABP and of H-FABP. B-FABP ranged from 0.8 microg/g wet weight in striatum tissue to 3.1 microg/g in frontal lobe. H-FABP was markedly higher, ranging from 16.2 microg/g wet weight in cerebellum tissue to 39.5 microg/g in pons. No B-FABP was detected in serum from healthy donors. H-FABP serum reference value was 6 microg/L. In the MTBI study, serum B-FABP was increased in 68% and H-FABP in 70% of patients compared with S100B (increased in 45%) and NSE (increased in 51% of patients). In ECT, serum B-FABP was increased in 6% of all samples (2 of 14 patients), whereas H-FABP was above its upper reference limit (6 microg/L) in 17% of all samples (8 of 14 patients), and S100B was above its upper reference limit (0.3 microg/L) in 0.4% of all samples.
Conclusions: B-FABP and H-FABP patterns differ among brain tissues, with the highest concentrations in the frontal lobe and pons, respectively. However, in each part of the brain, the H-FABP concentration was at least 10 times higher than that of B-FABP. Patient studies indicate that B-FABP and H-FABP are more sensitive markers for minor brain injury than the currently used markers S100B and NSE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2003.030361 | DOI Listing |
Rev Assoc Med Bras (1992)
March 2021
Central Hospital of Songjiang District, Department of Orthopedics - Shanghai, China.
BMJ Open
October 2019
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Objective: The diagnosis of transient ischaemic attack (TIA) based on symptoms and signs can be challenging and would greatly benefit from a rapid serum biomarker of brain ischaemia. We aimed to quantify the added diagnostic value of serum biomarkers in patients suspected of TIA beyond symptoms and signs.
Methods: This is a cross-sectional diagnostic accuracy study with a 6-month follow-up period.
Postepy Hig Med Dosw (Online)
November 2011
I Klinika Chirurgii Ogólnej i Endokrynologicznej, Uniwersytetu Medycznego w Białymstoku.
Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs) that bind long-chain fatty acids (LCFA), and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum). So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration.
View Article and Find Full Text PDFBMC Cancer
July 2011
Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Ann Anat
August 2010
Department of Rehabilitation, Tohoku Bunka Gakuen University, Aoba, Sendai, Japan.
Various fatty acids (FAs) are involved in many different functions in the organism as a source of energy, as essential ingredients of membranous lipids as well as intracellular signaling molecules. Intracellular fatty acid binding proteins (FABPs) comprise a family of soluble lipid binding proteins with low molecular masses and which can make long chain FAs soluble to allow intracellular translocation in the aqueous cytosol. To clarify the possible involvement of FAs and FABPs in hearing function, the present study investigated the localization of FABPs in the cochlea of adult mice using immunohistochemical procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!