Purpose: Thalidomide has demonstrated clinical activity in various malignancies including androgen-independent prostate cancer. The development of novel thalidomide analogs with better activity/toxicity profiles is an ongoing research effort. Our laboratory previously reported the in vitro antiangiogenic activity of the N-substituted thalidomide analog CPS11 and the tetrafluorinated analogs CPS45 and CPS49. The current study evaluated the therapeutic potential of these analogs in the treatment of prostate cancer in vivo.
Experimental Design: Severely combined immunodeficient mice bearing s.c. human prostate cancer (PC3 or 22Rv1) xenografts were treated with the analogs at their maximum tolerated doses. Tumors were then excised and processed for ELISA and CD31 immunostaining to determine the levels of various angiogenic factors and microvessel density (MVD), respectively.
Results: CPS11, CPS45, and CPS49 induced prominent and modest growth inhibition in PC3 and 22Rv1 tumors, respectively. Thalidomide had no effect on tumor growth in either xenograft. Vascular endothelial growth factor and basic fibroblast growth factor levels were not significantly altered by any of the thalidomide analogs or thalidomide in both PC3 and 22Rv1 tumors. CPS45, CPS49, and thalidomide significantly reduced PC3 tumor platelet-derived growth factor (PDGF)-AA levels by 58-82% (P < 0.05). Interestingly, treatment with the analogs and thalidomide resulted in differential down-regulation (>/=1.5-fold) of genes encoding PDGF and PDGF receptor isoforms as determined by DNA microarray analysis. Intratumoral MVD of 22Rv1 xenografts was significantly decreased by CPS45 and CPS49. CPS49 also reduced MVD in PC3 xenografts.
Conclusions: Thalidomide analogs CPS11 and 49 are promising anti-cancer agents. PDGF signaling pathway may be a potential target for these thalidomide analogs. Detailed microarray and functional analyses are under way with the aim of elucidating the molecular mechanism(s) of action of these thalidomide analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-03-0700 | DOI Listing |
J Med Chem
January 2025
Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
PROTACs usually occupy physicochemical space outside the one defined by classical drug-like molecules, which often presents considerable challenges in their optimization and development for oral administration. We have previously reported phenyl glutarimide (PG)-based BET PROTAC SJ995973, with improved overall degradation and antiproliferative activities compared to its direct thalidomide-based analogue dBET1, but similarly poor pharmacokinetic profile. To further demonstrate the PG utility, we describe here optimization efforts that led to the discovery of an orally bioavailable BET-PROTAC SJ44236 (), and results of a comprehensive comparative study with analogues containing alternative CRBN-directing warheads.
View Article and Find Full Text PDFBackground: Psoriasis is a chronic, systemic, inflammatory skin disease, with increasing prevalence; however, few studies have reported real-world prescription patterns and healthcare burden.
Objectives: This retrospective, observational cohort study used statutory health insurance claims data (January 2014-December 2019) to estimate prevalence/incidence of moderate-to-severe psoriasis in Germany. Patient characteristics, treatment patterns/compliance, and healthcare resource utilization (HCRU)/costs were evaluated, focusing on apremilast and anti-interleukin (IL), and anti-tumor necrosis factor (TNF) biologics.
Pharmacol Res Perspect
February 2025
Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage.
View Article and Find Full Text PDFLancet Haematol
January 2025
University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: In CARTITUDE-4, ciltacabtagene autoleucel (cilta-cel) significantly improved progression-free survival (primary endpoint; previously reported) versus standard of care in patients with relapsed, lenalidomide-refractory multiple myeloma. We report here patient-reported outcomes.
Methods: In the ongoing, phase 3, open-label CARTITUDE-4 study, patients were recruited from 81 sites in the USA, Europe, Asia, and Australia, and were randomly assigned 1:1 to cilta-cel (target, 0·75 × 10 CAR-T cells/kg) or standard of care (daratumumab, pomalidomide, and dexamethasone; pomalidomide, bortezomib, and dexamethasone).
Future Med Chem
January 2025
Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, FL, USA.
Isoindoline-1,3-dione, also referred as phthalimide, has gained recognition as promising pharmacophore due to the documented biological activities of its derivatives. Phthalimides are a family of synthetic molecules that exhibit notable bioactivity across various fields, particularly as anticancer and anti-inflammatory agents. This review focuses on syntheses and anti-inflammatory studies of the reported phthalimide derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!