Na(v)1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Na(v)1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we investigated its role in the ubiquitination and regulation of Na(v)1.5. Yeast two-hybrid and GST-pulldown experiments revealed an interaction between Na(v)1.5 C-terminus and Nedd4-2, which was abrogated by mutating the essential tyrosine of the PY-motif. Ubiquitination of Na(v)1.5 was detected in both transfected HEK cells and heart extracts. Furthermore, Nedd4-2-dependent ubiquitination of Na(v)1.5 was observed. To test for a functional role of Nedd4-2, patch-clamp experiments were performed on HEK cells expressing wild-type and mutant forms of both Na(v)1.5 and Nedd4-2. Na(v)1.5 current density was decreased by 65% upon Nedd4-2 cotransfection, whereas the PY-motif mutant channels were not affected. In contrast, a catalytically inactive Nedd4-2 had no effect, indicating that ubiquitination mediates this downregulation. However, Nedd4-2 did not alter the whole-cell or the single channel biophysical properties of Na(v)1.5. Consistent with the functional findings, localization at the cell periphery of Na(v)1.5-YFP fusion proteins was reduced upon Nedd4-2 coexpression. The Nedd4-1 isoform did not regulate Na(v)1.5, suggesting that Nedd4-2 is a specific regulator of Na(v)1.5. These results demonstrate that Na(v)1.5 can be ubiquitinated in heart tissues and that the ubiquitin-protein ligase Nedd4-2 acts on Na(v)1.5 by decreasing the channel density at the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000136816.05109.89DOI Listing

Publication Analysis

Top Keywords

nav15
14
ubiquitination nav15
12
nedd4-2
11
nav15 c-terminus
8
hek cells
8
ubiquitination
5
cardiac voltage-gated
4
voltage-gated sodium
4
channel
4
sodium channel
4

Similar Publications

Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5.

Biochem J

May 2020

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, U.S.A.

Cardiac sodium channel Nav1.5 is associated with cardiac arrhythmias and heart failure. Protein ubiquitination is catalyzed by an E1-E2-E3 cascade of enzymes.

View Article and Find Full Text PDF

Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels.

JCI Insight

September 2018

Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain.

Cardiac Nav1.5 and Kir2.1-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!