Voro3D: 3D Voronoi tessellations applied to protein structures.

Bioinformatics

Laboratoire de Minéralogie Cristallographie Paris, CNRS UMR 7590 Universités Paris 6 et 7, case 115, 4 Place Jussieu, 75252 Paris, France.

Published: April 2005

Unlabelled: Voro3D is an original easy-to-use tool, which provides a brand new point of view on protein structures through the three-dimensional (3D) Voronoi tessellations. To construct the Voronoi cells associated with each amino acid by a number of different tessellation methods, Voro3D uses a protein structure file in the PDB format as an input. After calculation, different structural properties of interest like secondary structures assignment, environment accessibility and exact contact matrices can be derived without any geometrical cut-off. Voro3D provides also a visualization of these tessellations superimposed on the associated protein structure, from which it is possible to model a polygonal protein surface using a model solvent or to quantify, for instance, the contact areas between a protein and a ligand.

Availability: The software executable file for PC using Windows 98, 2000, NT, XP can be freely downloaded at http://www.lmcp.jussieu.fr/~mornon/voronoi.html

Contact: franck.dupuis@sanofi-aventis.com; jean-paul-mornon@imcp.jussieu.fr.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bth365DOI Listing

Publication Analysis

Top Keywords

voronoi tessellations
8
protein structures
8
protein structure
8
protein
6
voro3d
4
voro3d voronoi
4
tessellations applied
4
applied protein
4
structures unlabelled
4
unlabelled voro3d
4

Similar Publications

Study on Microscopic Properties of Molten NaF-AlF-CaF/LiF/KF Using First-Principles Molecular Dynamics.

J Phys Chem B

January 2025

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.

View Article and Find Full Text PDF

FTDMP is a software framework for biomolecular docking and scoring. It can perform docking of subunits containing one or more protein, DNA, or RNA chains, followed by subsequent scoring of the resulting models. FTDMP can also be used for the ranking of user-provided models of biomolecular complexes, generated by any structure prediction method.

View Article and Find Full Text PDF

Crystallization and amorphization are important processes and different cooling rates cause these transitions. Obtaining pure metals from their molten state is a challenge unless these two are well understood. Here we study both these transitions in liquid Ti using molecular dynamics simulations wherein Ti is modeled with embedded atom potential.

View Article and Find Full Text PDF

For a locally finite set in , the order- Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in . As an example, a stationary Poisson point process in is locally finite, coarsely dense, and generic with probability one.

View Article and Find Full Text PDF

The influence of polar, water-miscible organic solvents (POS) on protein structure, stability, and functional activity is a subject of significant interest and complexity. This study examines the effects of acetonitrile (ACN), a semipolar, aprotic solvent, on the solvation properties of blocked Ace-Gly-X-Gly-Nme tripeptides (where Ace and Nme stands for acetyl and N-methyl amide groups respectively and X is any amino acid) through extensive molecular dynamics simulations. Individual simulations were conducted for each peptide, encompassing five different ACN concentrations within the range of χ = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!