Antinociceptive effects of sodium channel-blocking agents on acute pain in mice.

J Pharmacol Sci

Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.

Published: June 2004

The effects of various sodium channel blocking agents on acute thermal and mechanical nociception, as assessed using the plantar and tail pressure tests, respectively, were compared with the effects of morphine. The drugs used were mexiletine, lidocaine, carbamazepine, phenytoin, eperisone, tolperisone, and zonisamide. The sodium channel blocking agents exhibited a rather preferential elevation of the threshold for thermal nociception. By contrast, morphine produced similar analgesic effects on thermal and mechanical nociception. In the sciatic nerve isolated from mice, mexiletine, lidocaine, eperisone, and tolperisone impaired the propagation of low frequency action potentials (evoked at 0.2 Hz). Carbamazepine, phenytoin, and zonisamide generated a more frequency-dependent local anesthetic action with their obvious effects on higher frequency action potentials (evoked at 5 and/or 10 Hz). Our results show that sodium channel blocking agents have a preferential antinociceptive action against thermal stimulation that is likely to be attributed to their local anesthetic action.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.fpj03087xDOI Listing

Publication Analysis

Top Keywords

sodium channel
12
channel blocking
12
blocking agents
12
effects sodium
8
agents acute
8
thermal mechanical
8
mechanical nociception
8
mexiletine lidocaine
8
carbamazepine phenytoin
8
eperisone tolperisone
8

Similar Publications

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na1.7 inhibitor can block cough in naïve guinea pigs.

View Article and Find Full Text PDF

Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!