The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.68.1235 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.
Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Guangzhou National Laboratory , Guangzhou, China.
β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Introduction: Proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) are widely used to manage gastric acid-related disorders by inhibiting hydrochloric acid (HCl) secretion from parietal cells in the stomach. Although PPIs are known to have anti-inflammatory properties beyond their role in inhibiting gastric acid secretion, research on P-CABs is lacking. In this study, we aimed to investigate whether all available P-CABs exhibit anti-inflammatory effects in gastroesophageal reflux-induced esophagitis and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFOpen Vet J
November 2024
Parasitology Department, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
Background: Cathepsin-L (FhCL) is a group of enzymes that most flukes express and secreted significantly in parasite-host interactions. Researches are focusing on antigens released by as one of the keys to understanding immunologic pathways in parasite infection and targets for anthelmintics. Efforts to suppress FhCL function through vaccination or therapy using anthelmintic drugs are key factors in controlling field-level trematode infections.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan.
Autophagy, a crucial process in cancer, is closely intertwined with both tumor progression and drug resistance development. However, existing methods used to assess autophagy activity often pose invasiveness and time-related constraints, limiting their applicability in preclinical drug investigations. In this study, we developed a non-invasive autophagy detection system (NIADS-autophagy, also called G-cleave LC3B biosensor) by integrating a split-luciferase-based biosensor with an LC3B cleavage sequence, which swiftly identified classic autophagic triggers, such as Earle's Balanced Salt Solution and serum deprivation, through protease-mediated degradation pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!