In the present study we investigated whether apoptosis and phagocytosis are regulated by nuclear factor (NF)-kappaB in a model of chronic inflammation. The subcutaneous implant of lambda-carrageenin-soaked sponges elicited an inflammatory response, characterized by a time-related increase of leukocyte infiltration into the sponge and tissue formation, which was inhibited by simultaneous injection of wild-type oligodeoxynucleotide decoy to NF-kappaB. Molecular and morphological analysis performed on infiltrated cells demonstrated: 1) an inhibition of NF-kappaB/DNA binding activity; 2) an increase of polymorphonuclear leukocyte apoptosis correlated either to an increase of p53 or Bax and decrease of Bcl-2 protein expression; and 3) an increase of phagocytosis of apoptotic polymorphonuclear leukocytes by macrophages associated with an increase of transforming growth factor-beta1 and decrease of tumor necrosis factor-alpha as well as nitrite/nitrate production. Our results, showing that blockade of NF-kappaB by oligodeoxynucleotide decoy increases inflammatory cell apoptosis and phagocytosis, may contribute to lead to new insights into the mechanisms governing the inflammatory process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618533 | PMC |
http://dx.doi.org/10.1016/s0002-9440(10)63280-4 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.
View Article and Find Full Text PDFJ Pathol
January 2025
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.
View Article and Find Full Text PDFGlia
January 2025
Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
Microglia, the parenchymal macrophage of the central nervous system, serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!