Angiogenesis inhibitors are receiving increased attention as cancer therapeutics, but little is known of the cellular effects of these inhibitors on tumor vessels. We sought to determine whether two agents, AG013736 and VEGF-Trap, that inhibit vascular endothelial growth factor (VEGF) signaling, merely stop angiogenesis or cause regression of existing tumor vessels. Here, we report that treatment with these inhibitors caused robust and early changes in endothelial cells, pericytes, and basement membrane of vessels in spontaneous islet-cell tumors of RIP-Tag2 transgenic mice and in subcutaneously implanted Lewis lung carcinomas. Strikingly, within 24 hours, endothelial fenestrations in RIP-Tag2 tumors disappeared, vascular sprouting was suppressed, and patency and blood flow ceased in some vessels. By 7 days, vascular density decreased more than 70%, and VEGFR-2 and VEGFR-3 expression was reduced in surviving endothelial cells. Vessels in Lewis lung tumors, which lacked endothelial fenestrations, showed less regression. In both tumors, pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype. Vascular basement membrane persisted after endothelial cells degenerated, providing a ghost-like record of pretreatment vessel number and location and a potential scaffold for vessel regrowth. The potent anti-vascular action observed is evidence that VEGF signaling inhibitors do more than stop angiogenesis. Early loss of endothelial fenestrations in RIP-Tag2 tumors is a clue that vessel phenotype may be predictive of exceptional sensitivity to these inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618540PMC
http://dx.doi.org/10.1016/S0002-9440(10)63273-7DOI Listing

Publication Analysis

Top Keywords

endothelial fenestrations
16
tumor vessels
16
endothelial cells
16
vegf signaling
12
basement membrane
12
endothelial
10
vascular endothelial
8
endothelial growth
8
growth factor
8
factor vegf
8

Similar Publications

Glomerular endothelial cell (GEnC) injury is a common feature across the wide spectrum of glomerular diseases. We recently reported that the endothelial-specific knockout of increases the susceptibility to GEnC injury and subsequent development of subacute thrombotic microangiopathy (TMA). However, the mechanism(s) mediating GEnCs response to injury in TMA are poorly understood.

View Article and Find Full Text PDF

Layer-specific anatomical and physiological features of the retina's neurovascular unit.

Curr Biol

January 2025

Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:

The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.

View Article and Find Full Text PDF

Transcatheter Pulmonary Flow Restrictors: Current Trends and Future Perspectives.

Catheter Cardiovasc Interv

January 2025

Pediatrics & Medicine, Weill Cornell Medicine Chief International Patients Services & Chair, Sidra Department Cardiovascular Diseases, University of Jordan, Amman, Jordan.

Article Synopsis
  • Transcatheter Pulmonary Flow Restrictors (TPFRs) are innovative devices for managing pulmonary blood flow in congenital heart disease, yet there is a lack of detailed studies examining their variety and crucial design features.
  • * The review consolidates current knowledge on TPFRs, highlights significant design considerations, identifies gaps in medical practice, and suggests future research avenues to improve these devices.
  • * An analysis of 82 TPFR implants revealed challenges like complications with microvascular plugs, including issues with sizing, device migration, and thrombosis, while emphasizing the need for devices that can be safely removed and reduce risks like embolization and inflammation.
View Article and Find Full Text PDF

Background: EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.

View Article and Find Full Text PDF

In situ molecular profiles of glomerular cells by integrated imaging mass spectrometry and multiplexed immunofluorescence microscopy.

Kidney Int

November 2024

Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Electronic address:

Glomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease. However, little is known regarding the in situ molecular profiles of specific cell types and how these profiles change with disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!