Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum.

Antimicrob Agents Chemother

Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital Old Building, Observatory, Cape Town 7925, South Africa.

Published: July 2004

Endocytosis is a fundamental process of eukaryotic cells and fulfills numerous functions, most notably, that of macromolecular nutrient uptake. Malaria parasites invade red blood cells and during their intracellular development endocytose large amounts of host cytoplasm for digestion in a specialized lysosomal compartment, the food vacuole. In the present study we have examined the effects of artemisinin and the quinoline drugs chloroquine and mefloquine on endocytosis in Plasmodium falciparum. By using novel assays we found that mefloquine and artemisinin inhibit endocytosis of macromolecular tracers by up to 85%, while the latter drug also leads to an accumulation of undigested hemoglobin in the parasite. During 5-h incubations, chloroquine inhibited hemoglobin digestion but had no other significant effect on the endocytic pathway of the parasite, as assessed by electron microscopy, the immunofluorescence localization of hemoglobin, and the distribution of fluorescent and biotinylated dextran tracers. By contrast, when chloroquine was added to late ring stage parasites, followed by a 12-h incubation, macromolecule endocytosis was inhibited by more than 40%. Moreover, there is an accumulation of transport vesicles in the parasite cytosol, possibly due to a disruption in vacuole-vesicle fusion. This fusion block is not observed with mefloquine, artemisinin, quinine, or primaquine but is mimicked by the vacuole alkalinizing agents ammonium chloride and monensin. These results are discussed in the light of present theories regarding the mechanisms of action of the antimalarials and highlight the potential use of drugs in manipulating and studying the endocytic pathway of malaria parasites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC434207PMC
http://dx.doi.org/10.1128/AAC.48.7.2370-2378.2004DOI Listing

Publication Analysis

Top Keywords

artemisinin inhibit
8
inhibit endocytosis
8
endocytosis plasmodium
8
plasmodium falciparum
8
malaria parasites
8
mefloquine artemisinin
8
endocytic pathway
8
endocytosis
5
antimalarial quinolines
4
artemisinin
4

Similar Publications

Design of ROS-Triggered Sesquiterpene Lactone SC Prodrugs as TrxR1 Covalent Inhibitors for the Treatment of Non-Small Cell Lung Cancer.

J Med Chem

January 2025

Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.

Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS.

View Article and Find Full Text PDF

Ailanthone induces triple-negative breast cancer cells death involving the inhibition of OTUB1-mediated ERRα deubiquitylation.

J Adv Res

January 2025

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:

Introduction: Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer, and effective therapeutic strategies are needed. Estrogen-related receptor alpha (ERRα) is considered a promising target for managing TNBC.

Objectives: Here, we aimed to screen natural products to find downregulator of ERRα and elucidate its mechanism of action.

View Article and Find Full Text PDF

20-Deoxyingenol ester and ether derivatives: Synthesis, properties and cytotoxicity.

Bioorg Chem

January 2025

Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:

The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior.

View Article and Find Full Text PDF

Ellagic Acid from and Antimalarial Activity of Korean Medicinal Plants.

Molecules

January 2025

Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.

This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!