Application of capillary gas chromatography to studies on solvation thermodynamics.

J Chromatogr A

Div. Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina.

Published: May 2004

The potentiality of capillary gas chromatography (GC) as a means for research on solubility phenomena is focused. Basic thermodynamic information can be obtained in a simple and direct way from this technique relying on few parameters with their associated errors tightly controlled. An unexplored field of solvation phenomenology inaccessible to other techniques is revealed by the accuracy of capillary GC, provided that relevant chromatographic variables are utilized and an adequate treatment of the experimental information performed. The present article reviews different approaches for the attainment of basic thermodynamic information through capillary GC. Some traditional concepts on the treatment of chromatographic data for physicochemical measurement are questioned. Applications of the technique to research on solubility phenomena are depicted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2003.11.024DOI Listing

Publication Analysis

Top Keywords

capillary gas
8
gas chromatography
8
solubility phenomena
8
basic thermodynamic
8
application capillary
4
chromatography studies
4
studies solvation
4
solvation thermodynamics
4
thermodynamics potentiality
4
potentiality capillary
4

Similar Publications

Analysis of an Unsaturated Seepage Mechanism in Coal Seam Water Injection.

ACS Omega

December 2024

School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.

The wetting process of coal seam water injection is a typical unsaturated flow, but the steady-state method for measuring liquid permeability cannot reflect the unsaturated flow process of water in coal. The principle of wetting and expanding process of liquid in coal medium is very complex, and the multiscale pore characteristics of coal make the liquid permeability show multiscale characteristics. Therefore, liquid-phase triaxial seepage experiments under different working conditions are carried out, and a one-way multiscale dynamic apparent permeability coefficient model () = exp(-β) is established to analyze the influence of pressure, liquid wettability, and pore structure on the unsaturated wetting process of coal seam water injection.

View Article and Find Full Text PDF

Subslab soil gas (SSSG) samples were collected as part of an investigation to evaluate vapor intrusion (VI) into a building. The June 2015 Office of Solid Waste and Emergency Response (OSWER) VI Guide (U.S.

View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography.

Anal Chem

December 2024

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!