Erythrocyte storage may result in cell damage due to an alteration of membrane integrity, which results in potassium efflux and hemolysis. Lidocaine has been shown to protect erythrocytes from oxidative stress by a possible membrane effect. We conducted this study to examine the effects of lidocaine on human erythrocyte storage. Erythrocytes were kept for seven days at 04 degrees C in the absence or in presence of plasma, and of lidocaine at 36.9 and 221.6 microM. Cell damage was assessed by measuring potassium efflux in the supernatant after seven days, and studying potassium efflux and hemolysis induced by oxidative stress. As expected, erythrocyte storage in the presence of plasma was less deleterious. Lidocaine decreased potassium efflux after 7 days' storage. Resistance toward oxidative stress was greater when the erythrocytes had been kept in the presence of plasma. Considering that lidocaine is widely used in various clinical situations, this data may be of clinical relevance.
Download full-text PDF |
Source |
---|
BMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.
To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
, an opportunistic foodborne pathogen, has a strong resistance to osmotic stress and desiccation stress, but the current studies cannot elucidate this resistance mechanism absolutely. A mechanosensitive channel MscM was suspected of involving to desiccation resistance mechanism of To investigate the specific molecular mechanism, the mutant strain (Δ) was constructed using the homologous recombination method, and the complementary strain was obtained by gene complementation, followed by the analysis of the difference between the wild-type (WT), mutant, and complementary strains. Compared to the wild-type bacteria (WT), the inactivation rate of the Δ strain decreased by 15.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!