Protection afforded by heat shock protein 60 from Francisella tularensis is due to copurified lipopolysaccharide.

Infect Immun

Bldg. 245, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wilts SP4 0NS, United Kingdom.

Published: July 2004

Heat shock proteins (Hsps) have attracted significant attention as protective antigens against a range of diseases caused by bacterial pathogens. However, more recently there have been suggestions that the protective response is due to the presence of peptide components other than Hsps. We have shown that mice that had been immunized with purified heat shock protein 60 (Hsp60) isolated from Francisella tularensis were protected against a subsequent challenge with some strains of the bacterium. However, this protection appeared to be due to trace amounts of lipopolysaccharide, which were too low to be detected by using the Limulus amoebocyte lysate assay. This finding raises the possibility that the protection afforded by other bacterial Hsp60 proteins may be due to trace quantities of polysaccharide antigens carried by and acting in conjunction with the Hsps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC427437PMC
http://dx.doi.org/10.1128/IAI.72.7.4109-4113.2004DOI Listing

Publication Analysis

Top Keywords

heat shock
12
protection afforded
8
shock protein
8
francisella tularensis
8
afforded heat
4
protein francisella
4
tularensis copurified
4
copurified lipopolysaccharide
4
lipopolysaccharide heat
4
shock proteins
4

Similar Publications

This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).

View Article and Find Full Text PDF

Investigating the Impact of B Cell-Related Genes on Colorectal Cancer Immunosuppressive Environment and Immunotherapy Evasion.

Drug Dev Res

February 2025

Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.

We aimed to elucidate the prognostic and immunological roles of B cell-related genes in colorectal cancer (CRC). This study comprehensively integrated data from single-cell RNA-sequencing, TCGA, GEO, IMvigor210, GDSC, CancerSEA, HPA, and TISIDB databases to explore prognostic implications and immunological significance of B cell-related gene signature in CRC. We identified seven prognostically significant B cell-related genes for constructing a risk score.

View Article and Find Full Text PDF

The heat-induced natural egg yolk is a discontinuous object formed by the accumulation of yolk spheres. However, the reason why yolk spheres form individual microgels rather than continuous gels has not been elucidated. This study investigated the different gelation behaviors in the yolk sphere exterior (EYSE) and the yolk sphere interior (EYSI) by using 4D-DIA proteomics, electron microscopy, and multispectral techniques.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.

View Article and Find Full Text PDF

A molecular module improves rice grain quality and yield at high temperatures.

Natl Sci Rev

February 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.

Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!