The expression of fructosyltransferase (FTF), the enzyme that synthesizes fructan from sucrose, is regulated in the cariogenic bacterium Streptococcus mutans. However, the exact mechanism of FTF regulation is unknown. In this study, the role of a two-component regulatory system (covRS) in FTF expression was investigated. A CovR-defective mutant of S. mutans NG8 was constructed by homologous recombination. By use of immunoblotting, the mutant was shown to overexpress FTF in the absence of sucrose, while the wild type and a covRS-complemented mutant showed sucrose-inducible FTF expression. Reverse transcription-PCR showed that the ftf transcript levels were increased in the covR mutant, suggesting regulation at the transcriptional level. The covR mutant was also found to overproduce extracellular carbohydrate, and this phenotype was reversed by covRS complementation. Paper chromatographic studies and chemical tests showed that the extracellular carbohydrate contained glucose and glucuronic acid but not fructose. These results suggest that the extracellular carbohydrate was not fructan. The production of a glucose- and glucuronic acid-containing extracellular carbohydrate has not been reported for S. mutans and may be considered novel. In conclusion, the results indicate that the expression of FTF and a glucose- and glucuronic acid-containing carbohydrate was negatively regulated by the covRS two-component regulatory system in S. mutans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC427443 | PMC |
http://dx.doi.org/10.1128/IAI.72.7.3968-3973.2004 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
Platelets
December 2025
Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.
View Article and Find Full Text PDFNat Commun
January 2025
Biophysics Graduate Group, University of California, Davis, CA, USA.
P-cadherin, a crucial cell-cell adhesion protein which is overexpressed in numerous malignant cancers, is a popular target for drug delivery antibodies. However, molecular guidelines for engineering antibodies that can be internalized upon binding to P-cadherin are unknown. Here, we use a combination of biophysical, biochemical, and cell biological methods to demonstrate that trapping the P-cadherin extracellular region in an X-dimer adhesive conformation triggers cadherin endocytosis via an outside-in signaling mechanism.
View Article and Find Full Text PDFVet Res
January 2025
Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most harmful pathogens in the swine industry. Our previous studies demonstrated that the small extracellular domain (ECL2) of CLDN4 effectively blocks PRRSV infection. In this study, we explored the in vivo administration of swine ECL2 (sECL2) and found that it blocked HP-PRRSV infection and alleviated histopathological changes in organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!