Efficient attachment and ingestion of Mycobacterium avium subsp. paratuberculosis by cultured epithelial cells requires the expression of a fibronectin (FN) attachment protein homologue (FAP-P) which mediates FN binding by M. avium subsp. paratuberculosis. Invasion of Peyer's patches by M. avium subsp. paratuberculosis occurs through M cells, which, unlike other intestinal epithelial cells, express integrins on their luminal faces. We sought to determine if the interaction between FAP-P of M. avium subsp. paratuberculosis and soluble FN enabled targeting and invasion of M cells by M. avium subsp. paratuberculosis in vivo via these surface integrins. Wild-type and antisense FAP-P mutant M. avium subsp. paratuberculosis strains were injected alone or coinjected with blocking peptides or antibodies into murine gut loops, and immunofluorescence microscopy was performed to assess targeting and invasion of M cells by M. avium subsp. paratuberculosis. Nonopsonized M. avium subsp. paratuberculosis preferentially invaded M cells in murine gut loops. M-cell invasion was enhanced 2.6-fold when M. avium subsp. paratuberculosis was pretreated with FN. Invasion of M cells by the antisense FAP-P mutant of M. avium subsp. paratuberculosis was reduced by 77 to 90% relative to that observed for the control strains. Peptides corresponding to the RGD and synergy site integrin recognition regions of FN blocked M. avium subsp. paratuberculosis invasion of M cells by 75 and 45%, respectively, whereas the connecting segment 1 peptide was noninhibitory. Antibodies against the alpha5, alphaV, beta1, and beta3 integrin subunits inhibited M-cell invasion by 52 to 73%. The results indicate that targeting and invasion of M cells by M. avium subsp. paratuberculosis in vivo is mediated primarily by the formation of an FN bridge formed between FAP-P of M. avium subsp. paratuberculosis and integrins on M cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC427427 | PMC |
http://dx.doi.org/10.1128/IAI.72.7.3724-3732.2004 | DOI Listing |
Microbiol Spectr
January 2025
Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.
View Article and Find Full Text PDFVet Microbiol
February 2025
Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Research Chair in Biosecurity of Dairy Production, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
Paratuberculosis, a chronic wasting disease affecting domestic and wild ruminants worldwide, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Various diagnostic tests exist for detecting MAP infection; however, none of them possess perfect accuracy to be qualified as a reference standard test, particularly due to their notably low sensitivity.
View Article and Find Full Text PDFPathogens
December 2024
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China.
Paratuberculosis (PTB), primarily caused by subsp. (MAP), is a chronic infection that affects ruminants and is difficult to prevent, diagnose, and treat. Investigating how MAP infections affect the gut microbiota in sheep can aid in the prevention and treatment of ovine PTB.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.
View Article and Find Full Text PDFPrev Vet Med
February 2025
School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!