We investigated the effect of two inhibitors of nitric oxide (NO) synthesis, N(w)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, on lung inflammation caused by intestinal ischemia/reperfusion in rats. Relative to the sham-operated rats, intestinal ischemia/reperfusion (ischemia: 45 min; reperfusion: 30 min, 2 and 4 h) induced neutrophil recruitment (increased myeloperoxidase activity) and increased microvascular permeability (Evans blue dye extravasation) in the lungs and increased tumor necrosis factor (TNF) levels in the serum (L-929 cytotoxicity assay). L-NAME given before the ischemia exacerbated neutrophil accumulation, plasma extravasation, serum TNF and caused death of the animals, which was prevented by concomitant injection of L-arginine. Lung and systemic effects of intestinal ischemia/reperfusion were not modified when L-NAME was given just before reperfusion. Treatment with aminoguanidine inhibited plasma extravasation without affecting the other parameters evaluated. Dexamethasone reduced all the parameters. Our results indicate that during intestinal ischemia/reperfusion both constitutive and inducible NO synthases are called to exert a differential modulatory effect on lung inflammation and that maintenance of adequate levels of NO during ischemia is essential for the animals survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.04.048DOI Listing

Publication Analysis

Top Keywords

intestinal ischemia/reperfusion
16
microvascular permeability
8
neutrophil recruitment
8
nitric oxide
8
lung inflammation
8
plasma extravasation
8
intestinal
5
lung
4
lung microvascular
4
permeability neutrophil
4

Similar Publications

Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.

View Article and Find Full Text PDF

Hemorrhagic shock is a significant cause of trauma-related mortality. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a less-invasive aortic occlusion maneuver for severe hemorrhagic shock but potentially inducing oxidative stress injuries. In an animal model, this study investigated hydrogen gas inhalation therapy's potential to mitigate post-REBOA ischemia-reperfusion injuries (IRIs).

View Article and Find Full Text PDF

Zinc pretreatment for protection against intestinal ischemia-reperfusion injury.

World J Gastrointest Surg

December 2024

State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.

Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.

Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.

View Article and Find Full Text PDF

Organ transplantation is a vital intervention for end-stage organ failure; however, ischemia-reperfusion injury is a complication of transplantation, affecting the prognosis and survival of transplant recipients. As a complex ecosystem, recent research has highlighted the role of the intestinal microecology in transplantation, revealing its significant interplay with ischemia-reperfusion injury. This review explores the interaction between ischemia-reperfusion injury and intestinal microecology, with a special focus on how ischemia-reperfusion injury affects intestinal microecology and how these microecological changes contribute to complications after organ transplantation, such as infection and rejection.

View Article and Find Full Text PDF

[Protective effect of hydrogen sulfide on intestinal ischemia/reperfusion injury in rats by regulating c-Jun N-terminal kinase/activator protein-1 signaling pathway].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

November 2024

Department of Hepatobiliary Pancreatic Surgery, Quzhou City People's Hospital, Quzhou 324002, Zhejiang, China. Corresponding author: Lu Genlin, Email:

Objective: To investigate whether hydrogen sulfide (HS) protects against intestinal ischemia/reperfusion (I/R) injury in rats by regulating c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) signaling pathway.

Methods: Thirty male Wistar rats were divided into sham operated group (Sham group), I/R group, and HS donor sodium hydrosulfide (NaHS) intervention group (I/R+NaHS group), with 10 rats in each group. The I/R injury model was established by blocking the superior mesenteric artery with a non-traumatic vascular clip, with 60 minutes of ischemia followed by 120 minutes of reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!