We previously reported that cadmium (Cd) induced prostaglandin E2 (PGE2) biosynthesis through the activation of cytosolic phospholipase A2 (cPLA2) and induction of cyclooxygenase 2 (COX-2) in primary mouse osteoblastic cells. In the present study, we further investigated the mechanism of PGE2 production by Cd focusing on the main mitogen-activated protein kinase (MAPK) subfamilies that mediate prostaglandin synthesis, extracellular signal-regulated kinase (ERK1/2 MAPK), c-jun-amino-terminal kinase (JNK MAPK) and p38 MAPK, and protein kinase C (PKC) which is activated by Cd in several kinds of cells. Cd at 2 microM and above stimulated PGE2 production in osteoblastic cells and its production was inhibited by the kinase-specific inhibitors PD98059, SB203580, curcumin, and calphostin C. Calphostin C also inhibited the production of PGE2 by phorbol 12-myristate 13-acetate (PMA), which is a potent activator of PKC. PD98059 inhibited PGE2 production stimulated by PMA as well as Cd, indicating that activation of PKC by ERK1/2 MAPK was necessary for Cd-stimulated PGE2 production. Moreover, Cd stimulated the phosphorylation of these three MAPKs, and inhibition of the phosphorylation of ERK1/2 MAPK by calphostin C was also observed. On the other hand, Cd was found to phosphorylate cPLA2 and the phosphorylation was inhibited by PD98059, indicating that cPLA2 was activated by Cd through ERK1/2 MAPK and released arachidonic acid (AA), a substrate of COX-2, from membranous phospholipids. From these results, it was suggested that activation of each of the ERK1/2, p38, and JNK MAPK cascades in addition to that of PKC and cPLA2 played an important role in the Cd-stimulated biosynthesis of PGE2 in mouse osteoblastic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2004.03.014DOI Listing

Publication Analysis

Top Keywords

osteoblastic cells
16
pge2 production
16
erk1/2 mapk
16
protein kinase
12
mouse osteoblastic
12
mitogen-activated protein
8
primary mouse
8
mapk
8
jnk mapk
8
production stimulated
8

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Introduction: Osteoporosis is a metabolic skeletal disease characterized by low bone mass and strength, and increased risk for fragility fractures. It is a major health issue in aging populations, due to fracture associated increased disability and mortality. Antiresorptive treatments are first line choices in most of the cases.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!