Recombinant human interleukin-11 (rHuIL-11) and recombinant human bone morphogenetic protein-2 (rHuBMP-2) have been shown to act synergistically in the induction of osteoblast differentiation. To determine whether these two proteins can be used clinically in fracture healing and reconstructive surgery, we investigated whether rHuIL-11 and rHuBMP-2 act synergistically to heal segmental bone defects in a rabbit model. A 1.5-cm segmental defect was created in the right ulnar diaphysis of 20 Japanese white rabbits. Polylactic-co-glycolic acid (PLGA)-coated gelatin sponges (PGS) permeated with rHuBMP-2 (n = 8), rHuIL-11 plus rHuBMP-2 (n = 8), or rHuIL-11 (n = 4) were implanted into the bone defects. Radiographs were scored by two independent observers for bone formation and union rates after 2, 3, 4, and 8 weeks. Bone formation was higher in rabbits implanted with rHuBMP-2 plus rHuIL-11 than in those implanted with rHuBMP-2 alone, reaching statistical significance after 4 weeks. At early time points, the union rate in rabbits implanted with rHuBMP-2 plus rHuIL-11 was higher than in rabbits implanted with rHuBMP-2. At 2, 4, and 8 weeks, new bone volume was significantly higher in rabbits administered rHuIL-11 plus rHuBMP-2 than in those given rHuBMP-2 alone. In contrast, mechanical testing after 8 weeks showed that bone strength in the two groups of rabbits was equivalent. These findings show that rHuIL-11 and rHuBMP-2 act synergistically to accelerate bone formation without affecting bone strength. Treatment with a combination of rHuIL-11 and rHuBMP-2 may thus be of great benefit in fracture healing and for patients undergoing reconstructive surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1089/107999004323142204DOI Listing

Publication Analysis

Top Keywords

rhuil-11 rhubmp-2
20
rhubmp-2 rhuil-11
16
implanted rhubmp-2
16
bone defects
12
rhubmp-2
12
rhubmp-2 synergistically
12
bone formation
12
weeks bone
12
higher rabbits
12
rabbits implanted
12

Similar Publications

Recombinant human interleukin-11 (rHuIL-11) and recombinant human bone morphogenetic protein-2 (rHuBMP-2) have been shown to act synergistically in the induction of osteoblast differentiation. To determine whether these two proteins can be used clinically in fracture healing and reconstructive surgery, we investigated whether rHuIL-11 and rHuBMP-2 act synergistically to heal segmental bone defects in a rabbit model. A 1.

View Article and Find Full Text PDF

We previously demonstrated that recombinant human interleukin-11 (rHuIL-11) induced osteoblast differentiation of C3H10T1/2 progenitor cells and also acted synergistically with recombinant human bone morphogenetic protein-2 (rHuBMP-2) in performing the same function. In this study, we investigated the effect of rHuIL-11 and rHuBMP-2 on bone formation in a rat ectopic model. When placed in rats, implants consisting of polymer-coated gelatin sponges containing various concentrations of rHuBMP-2 showed a dose-dependent increase in calcium content.

View Article and Find Full Text PDF

Interleukin-11 (IL-11) is a pleiotropic cytokine that supports various types of hematopoietic cell growth and is involved in bone resorption. We report here the involvement of recombinant human IL-11 (rHuIL-11) in osteoblast differentiation in mouse mesenchymal progenitor cells, C3H10T1/2. rHuIL-11 alone increased alkaline phosphatase (ALP) activity and upregulated expression levels of osteocalcin (OC), bone sialo protein (BSP), and parathyroid hormone receptor (PTHR) mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!