Factors affecting the performance of maternal health care providers in Armenia.

Hum Resour Health

Senior Health Advisor, Demographic and Health Surveys, ORC Macro, Calverton, Maryland, USA.

Published: June 2004

BACKGROUND: Over the last five years, international development organizations began to modify and adapt the conventional Performance Improvement Model for use in low-resource settings. This model outlines the five key factors believed to influence performance outcomes: job expectations, performance feedback, environment and tools, motivation and incentives, and knowledge and skills. Each of these factors should be supplied by the organization in which the provider works, and thus, organizational support is considered as an overarching element for analysis. Little research, domestically or internationally, has been conducted on the actual effects of each of the factors on performance outcomes and most PI practitioners assume that all the factors are needed in order for performance to improve. This study presents a unique exploration of how the factors, individually as well as in combination, affect the performance of primary reproductive health providers (nurse-midwives) in two regions of Armenia. METHODS: Two hundred and eighty-five nurses and midwives were observed conducting real or simulated antenatal and postpartum/neonatal care services and interviewed about the presence or absence of the performance factors within their work environment. Results were analyzed to compare average performance with the existence or absence of the factors; then, multiple regression analysis was conducted with the merged datasets to obtain the best models of "predictors" of performance within each clinical service. RESULTS: Baseline results revealed that performance was sub-standard in several areas and several performance factors were deficient or nonexistent. The multivariate analysis showed that (a) training in the use of the clinic tools; and (b) receiving recognition from the employer or the client/community, are factors strongly associated with performance, followed by (c) receiving performance feedback in postpartum care. Other - extraneous - variables such as the facility type (antenatal care) and whether observation was on simulated vs. real patients (postpartum care) also had a role in observed performance. CONCLUSION: This study concludes that the antenatal and postpartum care performance of health providers in Armenia is strongly associated with having the practical knowledge and skills to use everyday tools of the trade and with receiving recognition for their work, as well as having performance feedback. The paper recognized several limitations and expects further studies will illuminate this important topic further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC471574PMC
http://dx.doi.org/10.1186/1478-4491-2-8DOI Listing

Publication Analysis

Top Keywords

performance
16
performance feedback
12
postpartum care
12
factors
10
factors performance
8
providers armenia
8
performance outcomes
8
knowledge skills
8
health providers
8
performance factors
8

Similar Publications

The study was designed to investigate the pattern of intraventricular Hemo-Dynamic Forces (HDF) and myocardial performance during exercise in Elite Cyclists (EC). Transthoracic stress echocardiography was performed on nineteen EC and thirteen age-matched sedentary controls (SC) at three incremental exercise intensities based on Heart Rate Reserve (HRR). Left Ventricular (LV) HDF were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base and latero-septal directions.

View Article and Find Full Text PDF

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Beyond physical health, managing type 1 diabetes (T1D) also encompasses a psychological component, including diabetes distress, that is, the worries, fears, and frustrations associated with meeting self-care demands over the lifetime. While digital health solutions have been increasingly used to address emotional health in diabetes, these technologies may not uniformly meet the unique concerns and technological savvy across all age groups.

Objective: This study aimed to explore the mental health needs of adolescents with T1D, determine their preferred modalities for app-based mental health support, and identify desirable design features for peer-delivered mental health support modeled on an app designed for adults with T1D.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!