Hydration free energies and entropies for water in protein interiors.

J Am Chem Soc

Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA.

Published: June 2004

Free energy calculations for the transfer of a water molecule from the pure liquid to an interior cavity site in a protein are presented. Two different protein cavities, in bovine pancreatic trypsin inhibitor (BPTI) and in the I76A mutant of barnase, represent very different environments for the water molecule: one which is polar, forming four water-protein hydrogen bonds, and one which is more hydrophobic, forming only one water-protein hydrogen bond. The calculations give very different free energies for the different cavities, with only the polar BPTI cavity predicted to be hydrated. The corresponding entropies for the transfer to the interior cavities are calculated as well and show that the transfer to the polar cavity is significantly entropically unfavorable while the transfer to the nonpolar cavity is entropically favorable. For both proteins an analysis of the fluctuations in the positions of the protein atoms shows that the addition of a water molecule makes the protein more flexible. This increased flexibility appears to be due to an increased length and weakened strength of protein-protein hydrogen bonds near the cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja049701cDOI Listing

Publication Analysis

Top Keywords

water molecule
12
free energies
8
forming water-protein
8
water-protein hydrogen
8
hydrogen bonds
8
cavity entropically
8
protein
5
cavity
5
hydration free
4
energies entropies
4

Similar Publications

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF

Synergistic oxidative modification and covalent cross-linking for the construction of sesbania gum-based high efficiency dust suppression foam sols.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

To effectively utilize sesbania gum in coal dust control and address the limitations of excessive viscosity and mediocre strength, oxidation treatment was used to improve its fluidity. Polyvinyl alcohol (PVA) and sodium trimetaphosphite (STMP) were used to enhance oxidized sesbania gum OSG, and crosslinking technology was used to improve its mechanical stability. This study developed a novel foam dust suppressant OSG-PVA/SDBS by response surface design, and the optimized dust suppressant material exhibited excellent adhesion and curing properties.

View Article and Find Full Text PDF

Simplified biomimetic peptide-based vehicle for enhanced tumor penetration and rapid enzyme-induced drug release.

J Colloid Interface Sci

January 2025

State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox).

View Article and Find Full Text PDF

Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography.

J Colloid Interface Sci

December 2024

Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.

The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!