The biosynthetically double-labeled lipopolysaccharide (LPS), containing (3)H-labeled on the fatty acyl-chains and (14)C-labeled on the glucosamine of Salmonella enterica serotype typhimurium, was isolated from bacteria grown in proteose peptone-beef extract (PPBE) medium in the presence of labeled precursors; 133 micro Ci/ml of [2-(3)H] acetate sodium salt and 0.167 micro Ci/ml of N-acetyl[D-1-(14)C]glucosamine. The LPS was extracted from the bacteria with 90% phenol/chloroform/petroleum ether, purified and stored in 0.1% (v/v) triethylamine/10 mM Tris HCl at -70 degrees C. Tissue slices and portions of the meninges were prepared and incubated in artificial cerebrospinal fluid (CSF) or Krebs phosphate buffer (Krebs) containing 150 ng/ml LPS with [(3)H] LPS (0.004 micro Ci/ml, sp. act. 28 micro Ci/mg LPS). The tissues were incubated under 95% oxygen/5% carbon dioxide at 37 degrees C with constant agitation until steady-state uptake was reached (60 min). At the end of the incubation period, tissues were processed for radioactivity measurement. The rat tissue partitioning of LPS in artificial CSF for brain and Krebs for other organs was measured by using the ratio of tissue to medium at the steady state in vitro. The following results were obtained from the study: Heart, 0.15; liver, 0.19; spleen, 0.12; kidney, 0.18; stomach, 0.17; small intestine, 0.18; brain stem, 0.10; cerebellum, 0.11; meninges, 0.77; hippocampus, 0.12; hypothalamus, 0.12; frontal cortex, 0.09 and caudate nucleus, 0.10. This information, along with plasma or blood/buffer partition coefficients, is a requisite for constructing a physiologically-based pharmacokinetic (PBPK) model of endotoxins for quantitative risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.956 | DOI Listing |
Appl Radiat Isot
August 2022
Department of Engineering Physics, Tsinghua University, Beijing, 100084, China. Electronic address:
In single-photon emission computed tomography (SPECT), a micro-sized Tc source is routinely used for performance measurement, geometry calibration, and system matrix generation. Therefore, a micro-sized source is critical in nuclear instrument production and quality control. Standard methods can only produce a point source with a large size and low total activity, as they are limited by the concentration of the Tc solution.
View Article and Find Full Text PDFJ Appl Toxicol
December 2004
Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Washington, DC, 20204, USA.
The biosynthetically double-labeled lipopolysaccharide (LPS), containing (3)H-labeled on the fatty acyl-chains and (14)C-labeled on the glucosamine of Salmonella enterica serotype typhimurium, was isolated from bacteria grown in proteose peptone-beef extract (PPBE) medium in the presence of labeled precursors; 133 micro Ci/ml of [2-(3)H] acetate sodium salt and 0.167 micro Ci/ml of N-acetyl[D-1-(14)C]glucosamine. The LPS was extracted from the bacteria with 90% phenol/chloroform/petroleum ether, purified and stored in 0.
View Article and Find Full Text PDFJ Nucl Med
June 2004
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Unlabelled: A whole-body 3-dimensional PET scanner using gadolinium oxyorthosilicate (GSO) crystals has been designed to achieve high sensitivity and reduced patient scanning time. This scanner has a diameter of 82.0 cm and an axial field of view of 18 cm without interplane septa.
View Article and Find Full Text PDFJ Nucl Med
August 2003
Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
Unlabelled: A high-sensitivity, high-resolution brain PET scanner ("G-PET") has been developed. This scanner is similar in geometry to a previous brain scanner developed at the University of Pennsylvania, the HEAD Penn-PET, but the detector technology and electronics have been improved to achieve enhanced performance.
Methods: This scanner has a detector ring diameter of 42.
J Nucl Med
June 1996
Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
Unlabelled: In radioimmunotherapy, the emission characteristics of the radioisotope is critical in determining the radiation dose to the tumor compared to normal organs. If antibodies internalize and transport low-energy electron emitting isotopes close to the tumor cell nucleus, an improved therapeutic advantage is achieved.
Methods: Using fluorescent microscopy, we studied the subcellular distribution of an internalizing antibody, A33, which detects a restricted determinant on colon cancer cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!