Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stroma-free hemoglobin (Hb) has been modified by pyridoxylation and followed by polymerization with glutaraldehyde as a blood substitute. Nevertheless, the reaction rate of pyridoxylated Hb (PLP-Hb) with glutaraldehyde is too fast to control its molecular weight distribution. Additionally, it was reported that glutaraldehyde is cytotoxic even at low doses. To overcome these problems, another aldehyde, beta-hydroxypropionaldehyde (beta-HPA), was used in the study to polymerize hemoglobin (PLP-Hb). beta-HPA is a natural compound (reuterin) produced by Lactobacillus reuteri. It was found that the maximum degree of PLP-Hb polymerization by reuterin (RR-PLP-Hb) was approximately 40% if the formation of high molecular (> 500 kDa) polymers should be prevented. In contrast, at the same reaction condition, the glutaraldehyde-polymerized PLP-Hb solution became gel-like, due to overpolymerization. This indicated that the rate of PLP-Hb polymerization by reuterin was significantly slower than that by glutaraldehyde. With increasing the reaction temperature, PLP-Hb concentration, or reuterin-to-PLP-Hb molar ratio, the time to reach the maximum degree of PLP-Hb polymerization by reuterin became significantly shorter. Removal of unpolymerized PLP-Hb from the RR-PLP-Hb solution can be effectively achieved by a gel-filtration column. The P(50) value of the unmodified Hb solution was 14 torr, while that of the RR-PLP-Hb solution was 20 torr, an indication of lower oxygen affinity. Additionally, the oxygen-Hb dissociation curves for both test solutions had a sigmodial shape and a nearly 100% saturation at 100 torr. In the in vivo study, it was found that the animals treated with the RR-PLP-Hb solution all survived and remained healthy more than 3 months. In contrast, only one out of six rats survived for the control group treated with the unmodified Hb solution. Furthermore, it was found that the RR-PLP-Hb solution resulted in a significantly longer circulation time ( approximately 12 h) than the unmodified Hb solution ( approximately 1.5 h). These results suggest that the reuterin-polymerized PLP-Hb solution may be a new option in the development of blood substitutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.20078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!