A high-resolution spectrometer aimed at performing experiments of inelastic X-ray scattering by electronic excitations is described. The spectrometer has been installed at the D12A-XRD1 beamline of the National Synchrotron Light Laboratory (LNLS), in Campinas, Brazil. Synchrotron radiation is monochromated to about 6 keV and focused horizontally onto the sample by a sagittally focusing Si(111) double-crystal monochromator in non-dispersive setting. The spectrometer operates in Rowland circle geometry and is based on a focusing Si(333) analyser in near-backdiffraction geometry for energy analysis of inelastically scattered photons. The analyser works at a fixed Bragg angle, so energy transfers are obtained by varying the incident photon energy. A relative energy resolution of the whole spectrometer of approximately 1.5 x 10(-4) at 5.93 keV has been achieved. As an example of application, inelastic X-ray scattering by plasmon excitation in polycrystalline Be was measured. Test results demonstrate that inelastic X-ray scattering experiments with eV energy resolution and an acceptable counting rate are feasible at the LNLS when focused on plasmon and particle-hole excitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0909049504010386 | DOI Listing |
Sci Bull (Beijing)
January 2025
Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:
The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.
View Article and Find Full Text PDFChemphyschem
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PS-ISRR, GERMANY.
Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!