The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just before the onset of spontaneously occurring spindle waves. Corticothalamic volleys also were effective in generating such hyperpolarizations followed by spindles in RE neurons. A drop of up to 40% in the apparent input resistance (R(in)) was associated with these hyperpolarizing potentials, suggesting an active process rather than disfacilitation. Accordingly, the reversal potential was approximately -100 mV for both spontaneous and cortically elicited hyperpolarizations, consistent with the activation of slow K(+) conductances. QX-314 in the recording pipettes decreased both the amplitude and incidence of prolonged hyperpolarizations, suggesting the participation of G protein-dependent K(+) currents in the generation of hyperpolarizations. Simultaneous extracellular and intracellular recordings in the RE nucleus demonstrated that some RE neurons discharged during the hyperpolarizations and, thus, may be implicated in their generation. The prolonged hyperpolarizations preceding spindles may play a role in the transition from tonic to bursting firing of RE neurons within a range of membrane potential (-60 to -65 mV) at which they set favorable conditions for the generation of low-threshold spike bursts that initiate spindle sequences. These data are further arguments for the generation of spindles within the thalamic RE nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC470757 | PMC |
http://dx.doi.org/10.1073/pnas.0402761101 | DOI Listing |
FASEB J
December 2024
Department of Biological Sciences, Konkuk University, Seoul, South Korea.
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress.
View Article and Find Full Text PDFiScience
December 2024
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.
View Article and Find Full Text PDFFree Radic Res
December 2024
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:
Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!