The goal of this study was to elucidate the relationships between early ligand binding/receptor processing events and cellular responses for the N-formyl peptide receptor system on human neutrophils as a model of a GPCR system in a physiologically relevant context. Binding kinetics of N-formyl-methionyl-leucyl-phenylalanyl-phenylalanyl-lysine-fluorescein and N-formyl-valyl-leucyl-phenylalanyl-lysine-fluorescein to the N-formyl peptide receptor on human neutrophils were characterized and combined with previously published binding data for four other ligands. Binding was best fit by an interconverting two-receptor state model that included a low affinity receptor state that converted to a high affinity state. Response behaviors elicited at 37 degrees C by the six different agonists for the N-formyl peptide receptor were measured. Dose response curves for oxidant production, actin polymerization, and G-protein activation were obtained for each ligand; whereas all ligands showed equal efficacy for all three responses, the ED(50) values varied as much as 7000-fold. The level of agonism and rank order of potencies of ligands for actin and oxidant responses were the same as for the G-protein activation assay, suggesting that the differences in abilities of ligands to mediate responses were determined upstream of G-protein activation at the level of ligand-receptor interactions. The rate constants governing ligand binding and receptor affinity conversion were ligand-dependent. Analysis of the forward and reverse rate constants governing binding to the proposed signaling receptor state showed that it was of a similar energy for all six ligands, suggesting the hypothesis that ligand efficacy is dictated by the energy state of this ligand-receptor complex. However, the interconverting two-receptor state model was not sufficient to predict response potency, suggesting the presence of receptor states not discriminated by the binding data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi035335iDOI Listing

Publication Analysis

Top Keywords

n-formyl peptide
16
human neutrophils
12
peptide receptor
12
g-protein activation
12
receptor
8
binding kinetics
8
cellular responses
8
responses n-formyl
8
binding data
8
interconverting two-receptor
8

Similar Publications

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Dapsone is a sulfone used in treating inflammatory skin conditions. Despite its widespread dermatological use, the pharmacological actions of dapsone remain poorly understood. Here, we examined how different aspects of neutrophil functions are affected by dapsone.

View Article and Find Full Text PDF

CSF Mitochondrial N-Formyl Methionine Peptide as Complementary Diagnostic Tool in Anti-NMDAR Encephalitis and Anti-LGI1 Encephalitis.

Neuropsychiatr Dis Treat

December 2024

Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510180, People's Republic of China.

Background: Mitochondrial damage is significant in autoimmune diseases, with mitochondrial N-formyl methionine peptide (fMet) being released from damaged mitochondria. However, its potential as a marker for assessing the severity of two kinds of encephalitis - anti-N-methyl-D-aspartate receptor (anti-NMDAR) and anti-leucine-rich glioma-inactivated 1 (LGI1) - remains uncertain. We measured CSF fMet levels in anti-NMDAR encephalitis and anti-LG1 encephalitis patients, assessing its diagnostic and therapeutic potential.

View Article and Find Full Text PDF

Introduction: Granulocyte concentrates (GC) are leukocyte preparations enriched in neutrophils that can potentially save neutropenic patients from life-threatening, antimicrobial-resistant infections. The main challenge of GC transfusions is preserving the viability and antimicrobial activity of neutrophils beyond 24 h to reduce the logistical burden on collection centers and increase the availability of this cell therapy. Thus, the aim of this study was to explore extending the ex vivo viability and antimicrobial activity of GC neutrophils up to 72 h with a unique combination of the clinically-approved additives Plasma-Lyte, SAGM, AS-3 and Alburex.

View Article and Find Full Text PDF

Neutrophils in the Spotlight-An Analysis of Neutrophil Function and Phenotype in ARDS.

Int J Mol Sci

November 2024

Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.

Acute respiratory distress syndrome (ARDS) is a complex disease pattern in which pathogenesis polymorphonuclear neutrophil granulocytes (PMN) play a key role. In previous experiments, we could show that interaction with collagen III (an important component of pulmonary tissue) is a possible trigger of neutrophil reactive oxygen species (ROS) production. To investigate possible correlations, further elucidate ARDS pathophysiology, and maybe find pharmacological targets, we evaluated PMNs from blood (circulating PMNs: cPMNs) and tracheal secretion (tPMNs) from patients with and without ARDS with regard to function and phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!