Synchronization of chaos is achieved experimentally in unidirectionally coupled external-cavity vertical-cavity surface-emitting semiconductor lasers operating in an open-loop regime. Synchronization is observed when the polarization of the transmitter is perpendicular to the polarization (x polarization) of the free-running receiver. The ratio of transmitter output to y-polarized receiver output power shows normal (positive-slope) synchronization. However, inverse (negative-slope) synchronization is found to arise between the transmitter output and the x-polarized receiver output power.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.29.001215 | DOI Listing |
Chaos
January 2025
Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.
We examine the impact of the time delay on two coupled massive oscillators within the second-order Kuramoto model, which is relevant to the operations of real-world networks that rely on signal transmission speed constraints. Our analytical and numerical exploration shows that time delay can cause multi-stability within phase-locked solutions, and the stability of these solutions decreases as the inertia increases. In addition to phase-locked solutions, we discovered non-phase-locked solutions that exhibit periodic and chaotic behaviors, depending on the amount of inertia and time delay.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.
Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, USA.
Chaotic systems can exhibit completely different behaviors given only slightly different initial conditions, yet it is possible to synchronize them through appropriate coupling. A wide variety of behaviors-complete chaos, complete synchronization, phase synchronization, etc.-across a variety of systems have been identified but rely on systems' phase space trajectories, which suppress important distinctions between very different behaviors and require access to the differential equations.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
School of Statistics and Data Science, Nanjing Audit University, Nanjing 211815, China.
With the widespread application of chaotic systems in many fields, research on chaotic systems is becoming increasingly in-depth. This article first proposes a new dynamic model of financial risk contagion based on financial principles and discusses some basic dynamic characteristics of the new chaotic system, such as equilibrium points, dissipativity, Poincaré diagrams, bifurcation diagrams, etc. Secondly, with the consideration of privacy during data transmission, the method was designed to protect the privacy of controlled systems in finite time based on perturbation.
View Article and Find Full Text PDFChaos
January 2025
Department of Cognitive Sciences, University of California, Irvine, California 92617, USA.
We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!