Using microinjection of recombinant protein to directly control 'expression' levels, we have compared the proliferative response to ras oncogene activation in two normal cell types--fibroblast and thyroid epithelial cell--which give rise to human tumours with very low and high frequencies of ras mutation respectively. A concentration-dependent stimulation of DNA synthesis was observed in thyrocytes, matched by an almost perfectly reciprocal inhibition in fibroblasts. A concentration-dependent induction of the cyclin-dependent kinase (CDK) inhibitor p21WAF1 was observed in both cell types, but p16Ink4a was induced by ras only in fibroblasts. This difference could not account for the fibroblast specificity of the growth-inhibitory response, however, since proliferation of p16-deficient fibroblasts was also inhibited by mutant ras. We conclude that the striking contrast in proliferative response to ras between fibroblasts and thyroid epithelial cells cannot readily be explained by differential induction of either of the two key CDK inhibitors, p16Ink4a and p21WAF1, but is consistent with a differential ability of p21WAF1 to antagonize ras-induced mitogenic signals in the two cell types. Such tissue-specific differences provide an attractive explanation for the observed specificity of ras mutation for particular human tumour types, and emphasize the inappropriateness of fibroblasts as a model for ras-induced tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1207798 | DOI Listing |
SAR QSAR Environ Res
January 2025
Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation.
View Article and Find Full Text PDFTrends Cancer
December 2024
Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea. Electronic address:
Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.
View Article and Find Full Text PDFCancer Rep (Hoboken)
December 2024
Department of Hematology and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Background: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis with diverse clinical manifestations, often associated with mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. BRAF and KRAS mutations, which are driver mutations of oncogenes, participate in the same signaling pathway (MAPK/ERK pathway) and are usually mutually exclusive. We report a case of ECD with concurrent BRAF and KRAS mutations treated using BRAF and MEK inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!