Because hypercholesterolemia can attenuate endothelial function and exercise training can augment endothelial function, we hypothesized that exercise training would improve endothelial function of coronary arterioles from pigs in the early stages of cardiovascular disease induced by a high-fat, high-cholesterol (HF) diet. Yucatan miniature swine were fed a normal-fat (NF) diet or HF diet (2% cholesterol) for 20 wk in which 8 and 46% of their calories were derived from fat, respectively. Both groups were subdivided into sedentary (Sed) or exercise-trained (Ex) groups. This resulted in four experimental groups: NFSed, NFEx, HFSed, and HFEx. Endothelial function was assessed in coronary arterioles 75-100 microm in diameter dissected from the left ventricular apex. Responses to endothelial-dependent dilation induced by bradykinin (BK), ADP, and flow were similar in all four groups, whereas dilation to aggregating platelets in the presence of indomethacin and ketanserin was attenuated in HFSed arterioles (P = 0.01). The attenuated response to aggregating platelets was prevented or reversed in HFEx arterioles (P = 0.03). In HFSed arterioles, BK induced release of an indomethacin-sensitive prostanoid constrictor. In contrast, after exercise training, there was no evidence of this constrictor and BK-induced release of an indomethacin-sensitive prostanoid dilator in HFEx arterioles (P = 0.04). Endothelial nitric oxide synthase protein in arterioles was significantly reduced in HF groups (P < 0.05) and increased in Ex groups (P < 0.05). Interestingly, the relative contribution of nitric oxide to BK-induced dilation, as assessed with nitro-L-arginine methyl ester, was similar in arterioles in the NF, HF, Sed, and Ex groups. These results suggest that, in the early stages of cardiovascular disease, a high-fat, high-cholesterol diet has modest effects on endothelial-dependent dilation in coronary arterioles; nonetheless, these effects are prevented or reversed with exercise training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00261.2004 | DOI Listing |
Biochem Genet
January 2025
Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.
Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.
Clin Pharmacol Ther
January 2025
Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.
View Article and Find Full Text PDFCerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!