Bronchopulmonary dysplasia is a leading cause of mortality and morbidity in preterm infants despite improved treatment modalities. Pentoxifylline, a phosphodiesterase inhibitor, inhibits multiple processes that lead to neonatal hyperoxic lung injury, including inflammation, coagulation, and edema. Using a preterm rat model, we investigated the effects of pentoxifylline on hyperoxia-induced lung injury and survival. Preterm rat pups were exposed to 100% oxygen and injected subcutaneously with 0.9% saline or 75 mg/kg pentoxifylline twice a day. On day 10, lung tissue was harvested for histology, fibrin deposition, and mRNA expression, and bronchoalveolar lavage fluid was collected for total protein concentration. Pentoxifylline treatment increased mean survival by 3 days (P = 0.0018) and reduced fibrin deposition by 66% (P < 0.001) in lung homogenates compared with untreated hyperoxia-exposed controls. Monocyte chemoattractant protein-1 expression in lung homogenates was decreased, but the expressions of TNF-alpha, IL-6, matrix metalloproteinase-12, tissue factor, and plasminogen activator inhibitor-1 were similar in both groups. Total protein concentration in bronchoalveolar lavage fluid was decreased by 33% (P = 0.029) in the pentoxifylline group. Pentoxifylline treatment attenuates alveolar fibrin deposition and prolongs survival in preterm rat pups with neonatal hyperoxic lung injury, probably by reducing capillary-alveolar protein leakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00452.2004 | DOI Listing |
Sci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.
View Article and Find Full Text PDFCancer Rep (Hoboken)
December 2024
Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Vietnam.
Introduction: Nonbacterial thrombotic endocarditis (NBTE) is a rare cardiac manifestation in patients with advanced malignancies of the lungs, pancreas, gynecological system, and gastrointestinal tract. It is often confirmed postmortem by histopathological evidence of sterile platelet-fibrin deposits attached to the endocardium, most often on heart valves. To the best of our knowledge, our case is the first to report multiple heart lesions caused by the systemic effect of cholangiocarcinoma.
View Article and Find Full Text PDFBlood Adv
December 2024
Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.
Antithrombin (AT) is an anticoagulant serpin involved in the regulation of proteolytic activities of coagulation proteases. AT also possesses a direct anti-inflammatory function. The anticoagulant function of AT is mediated through its reactive-center loop (RCL)-dependent inhibition of coagulation proteases, but anti-inflammatory function of AT is mediated via its D-helix-dependent interaction with vascular glycosaminoglycans (GAGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!