UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyzes the first step in the biosynthesis of peptidoglycan, involving the transfer of the intact enolpyruvyl moiety from phosphoenolpyruvate to the 3'-hydroxyl group of UDP-N-acetylglucosamine (UDPNAG). The enzyme is irreversibly inhibited by the antibiotic fosfomycin. The inactivation is caused by alkylation of a highly conserved cysteine residue (C115) that participates in the binding of phosphoenolpyruvate. The three-dimensional structure of the enzyme suggests that two residues may play a decisive role in fosfomycin binding: K22 and R120. To investigate the role of these residues, we have generated the K22V, K22E, K22R and R120K single mutant proteins as well as the K22V/R120K and K22V/R120V double mutant proteins. We demonstrated that the K22R mutant protein behaves similarly to wild-type enzyme, whereas the K22E mutant protein failed to form the covalent adduct. On the other hand, the K22V mutant protein requires the presence of UDPNAG for the formation of the adduct indicating that UDPNAG plays a crucial role in the organization of productive interactions in the active site. This model receives strong support from heat capacity changes observed for the K22V/R120K and R120K mutant proteins: in both mutant proteins, the heat capacity changes are markedly reduced indicating that their ability to form a closed protein conformation is impeded due to the R120K exchange.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.2004.04196.x | DOI Listing |
Appl Environ Microbiol
December 2024
School of Medicine, Nankai University, Tianjin, Tianjin, China.
is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Unlabelled: Due to the importance of post-translational modification (PTM) in cellular function, viruses have evolved to both take advantage of and be susceptible to such modification. Adenovirus encodes a multifunctional protein called protein VII, which is packaged with the viral genome in the core of virions and disrupts host chromatin during infection. Protein VII has several PTMs whose addition contributes to the subnuclear localization of protein VII.
View Article and Find Full Text PDFJ Virol
December 2024
1Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University of California, Los Angeles, Los Angeles, CA, United States.
Purpose: Antibody-drug conjugates (ADCs) harboring topoisomerase I (TOP1) inhibitor payloads have improved survival for patients with metastatic breast cancer (MBC). However, knowledge of ADC resistance mechanisms and potential impact on sequential use of ADCs is limited. Here, we report the incidence and characterization of TOP1 mutations arising in the setting of ADC resistance in MBC.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.
Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!