Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts.

Carcinogenesis

Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.

Published: November 2004

Somatostatin receptor subtypes, especially subtype 2 (SSTR2), exert their antitumor (cytostatic and/or cytotoxic) and anti-angiogenic effects. Here we aimed to investigate the anti-angiogenic effect of SSTR2 gene transfer into pancreatic cancer cell line PC-3, and the mechanisms involved in this effect. The full-length human SSTR2 complementary DNA was introduced into pancreatic cancer cell line PC-3 by lipofectamine-mediated transfection, and stable expression of SSTR2 was detected by immunohistochemistry and RT-PCR. Athymic mice were separately xenografted with SSTR2-expressing cells (experimental group), vector control and mock control cells. Intratumoral microvessel density (MVD) was assessed by immunohistochemistry. Immunohistochemistry and RT-PCR were used to determine the expression of angiogenic factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and matrix metalloproteinase (MMP)-2 in xenograft tumors. MVD was significantly lower in the experimental group (5.16 +/- 1.34) than that in the vector control (16.52 +/- 2.25) and mock control (15.32 +/- 2.53) (P < 0.05). The immunohistochemical assay showed a significant decrease in the expression of VEGF, bFGF and MMP-2 protein in the experimental group compared with the vector control and mock control, considering both the integral optical density and area of staining (P < 0.05). RT-PCR showed a significant reduction of VEGF, bFGF and MMP-2 mRNA expression in the experimental group compared with the vector control and mock control (P < 0.05). Thus, introduction of the SSTR2 gene, the expression of which is frequently lost in human pancreatic adenocarcinoma, exerts its anti-angiogenic effects by down-regulating the expression of the factors, which are involved in tumor angiogenesis and metastasis, suggesting SSTR2 gene transfer as a promising strategy of gene therapy for pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgh216DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
16
experimental group
16
vector control
16
mock control
16
anti-angiogenic effects
12
sstr2 gene
12
control mock
12
somatostatin receptor
8
human pancreatic
8
gene transfer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!