MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule.

Br J Ophthalmol

Department of Pathology, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.

Published: July 2004

Purpose: The development of posterior capsule contraction following cataract surgery is caused by the activity of residual lens epithelial cells. Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes, which are essential for cell migration and cell mediated contraction following wound healing. The authors investigated whether inhibiting MMP activity can reduce lens epithelial cell migration and as a result, lead to a reduction in cell mediated capsule contraction.

Methods: Human donor lens capsules were cultured and treated with a broad spectrum MMP inhibitor, Ilomastat (GM6001). MMP-2 and MMP-9 production were determined by ELISA. Cell migration onto the posterior capsule and capsule contraction were digitally measured.

Results: MMP inhibition significantly reduced lens epithelial cell migration onto the posterior capsule (p<0.05), and a reduction in capsule contraction was observed (p<0.05).

Conclusions: Ilomastat significantly reduced lens epithelial cell migration onto the posterior capsule surface and inhibited capsule contraction. MMP inhibition may have a role in the therapeutic treatment of posterior capsule opacification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1772237PMC
http://dx.doi.org/10.1136/bjo.2003.034629DOI Listing

Publication Analysis

Top Keywords

cell migration
20
lens epithelial
16
epithelial cell
12
posterior capsule
12
mmp inhibition
8
capsule contraction
8
cell mediated
8
migration posterior
8
cell
7
lens
6

Similar Publications

Background: Pancreatic adenocarcinoma (PAAD) is a common malignancy with a very low survival rate. More and more studies have shown that SPTAN1 may be involved in the development and progression of a variety of tumors, including rectal cancer, Pancreatic adenocarcinoma, etc., and may affect their prognosis.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a prevalent invasive bone cancer, with numerous homeobox family genes implicated in tumor progression. This study aimed to develop a prognostic model using HOX family genes to assess osteosarcoma patient outcomes. Data from osteosarcoma patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts were collected.

View Article and Find Full Text PDF

De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.

View Article and Find Full Text PDF

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF

Lipid metabolic remodeling delays senescence of T cells to potentiate their immunity against solid tumors.

J Immunother Cancer

January 2025

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China

Background: Tumor cells can drive the senescence of effector T cells by unbalancing their lipid metabolism, thereby limiting adoptive T cell therapy and contributing to tumor immune evasion. Our objective is to provide a feasible strategy for enhancing T cell treatment efficacy against solid tumors.

Methods: In this study, liposomal arachidonyl trifluoromethyl ketone (ATK) was anchored onto the adoptive T cell surface via bioorthogonal reactions, aiming to specifically inhibit the group IVA cytosolic phospholipase Aα (cPLAα), a key enzyme facilitating phospholipid metabolism and senescent state of T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!