Bioaerosol sampling is necessary to monitor and control human exposure to harmful airborne microorganisms. An important parameter affecting the collection of airborne microorganisms is the electrical charge on the microorganisms. Using a new design of an electrostatic precipitator (ESP) for bioaerosol sampling, the polarity and relative strength of the electrical charges on airborne microorganisms were determined in several laboratory and field environments by measuring the overall physical collection efficiency and the biological collection efficiency at specific precipitation voltages and polarities. First, bacteria, fungal spores, and dust dispersed from soiled carpets were sampled in a walk-in test chamber. Second, a simulant of anthrax-causing Bacillus anthracis spores was dispersed and sampled in the same chamber. Third, bacteria were sampled in a small office while four adults were engaged in lively discussions. Fourth, bacteria and fungal spores released from hay and horse manure were sampled in a horse barn during cleanup operations. Fifth, bacteria in metalworking fluid droplets were sampled in a metalworking simulator. It was found that the new ESP differentiates between positively and negatively charged microorganisms, and that in most of the tested environments the airborne microorganisms had a net negative charge. This adds a signature to the sampled microorganisms that may assist in their identification or differentiation, for example, in an anti-bioterrorism network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15459620490424357 | DOI Listing |
Environ Pollut
January 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan province, China. Electronic address:
Dental operations inherently involve a high risk of airborne cross-infection among medical staff and patients due to the exposure of respiratory secretions, which contain pathogenic microorganisms and typically spread in the form of aerosols. In order to contribute to the understanding of aerosol dynamics during dental operation and efficiently mitigate their dispersion and deposition through appropriate ventilation, 3D numerical simulations and full-scale experimental measurements were performed in this study. The indoor airflow distribution and dynamic aerosol behaviors observed under three optimized ventilation schemes (Scenario I-III) were compared with those observed under the current ventilation system.
View Article and Find Full Text PDFEnviron Res Commun
December 2024
Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
Bioaerosols, a significant yet underexplored component of atmospheric particulate matter, pose substantial public health risks, particularly in regions with poor air quality. This study investigates the composition of bioaerosols in public spaces, specifically two interstate motor parks and two marketplaces in Osun State, Nigeria, over six months. Air samples were collected, and bacterial and fungal species were identified, focusing on pathogenic organisms.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:
Appl Environ Microbiol
December 2024
Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany.
Microbial nitrate reduction coupled to iron(II) oxidation (NRFeOx) occurs in paddy soils due to high levels of dissolved iron(II) and regular application of nitrogen fertilizer. However, to date, there is no lithoautotrophic NRFeOx isolate or enrichment culture available from this soil environment. Thus, resulting impacts on greenhouse gas emissions during nitrate reduction (i.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!