A series of studies was performed to address treatment against the former chemical warfare edemagenic gas phosgene. Both in situ and in vivo models were used to assess the efficacy of postexposure treatment of phosgene-induced lung injury using clinically existing drugs. The degree of efficacy was judged by examining treatment effects on pulmonary edema formation (PEF) as measured by wet/dry weight (WW/DW) ratios, real-time (in situ) lung weight gain (LWG), survival rates (SR), odds ratios, and glutathione (GSH) redox states. Drugs included N-acetylcysteine (NAC), ibuprofen (IBU), aminophylline (AMIN), and isoproterenol (ISO). Using the in situ isolated perfused rabbit lung model (IPRLM), intratracheal (IT) NAC (40 mg/kg bolus) delivered 45-60 min after phosgene exposure (650 mg/m(3)) for10 min lowered pulmonary artery pressure, LWG, leukotrienes (LT) C(4)/D(4)/E(4), lipid peroxidation, and oxidized GSH. We concluded that NAC protected against phosgene-induced lung injury by acting as an antioxidant by maintaining protective levels of GSH, reducing both lipid peroxidation and production of arachidonic acid metabolites. Also in IPRLM, administration of AMIN (30 mg/kg) 80-90 min after phosgene exposure significantly reduced lipid peroxidation and perfusate LTC(4)/D(4)/E(4), reduced LWG, and prevented phosgene-induced decreases in lung tissue cAMP. These data suggest that protective mechanisms observed with AMIN involve decreased LTC(4)/D(4)/E(4) mediated pulmonary capillary permeability and attenuated lipid peroxidation. Direct antipermeability effects of AMIN-induced upregulation of cAMP on cellular contraction may also be important in protection against phosgene-induced lung injury. Posttreatment with ISO in the IPRLM by either combined intravascular (iv; infused into pulmonary artery at 24 microg/min infused) + IT (24 microg bolus) or IT route alone 50-60 min after phosgene exposure significantly lowered pulmonary artery pressure, tracheal pressure, and LWG. ISO treatment significantly enhanced GSH products or maintained protective levels when compared with results from phosgene-exposed only rabbits. These data suggest that protective mechanisms for ISO involve reduction in vascular pressure, decreased LTC(4)/D(4)/E(4)-mediated pulmonary capillary permeability, and favorably maintained lung tissue GSH redox states. For in vivo male mouse (CD-1, 25-30 g) studies IBU was administered ip within 20 min after a lethal dose of phosgene (32 mg/m(3) for 20 min) at 0 (saline), 3, 9, or 15 mg/mouse. Five hours later, a second IBU injection was given but at half the original doses (0, 1.5, 4.5, and 7.5 mg/mouse); therefore, these treatment groups are now referred to as the 0/0, 3/1.5, 9/4.5, and 15/7.5 mg IBU/mouse groups. SRs and odds ratios were calculated for each dose at 12 and 24 h. The 12-h survival was 63% for 9/4.5 mg IBU and 82% for the 15/7.5 mg IBU groups, compared with 25% for saline-treated phosgene-exposed mice. At 24 h, those survival rates were reduced to 19%, 19%, and 6%, respectively. In the 15/7.5 mg IBU group, lung WW/DW ratios were significantly lower than in saline-treated mice at 12 h. Lipid peroxidation was lower only for the 9/4.5 mg IBU dose; however, nonprotein sulfhydryls (a measure of GSH) were greater across all IBU doses. The odds ratio was 5 for the 9/4.5 IBU group at 12 h and 13 for the 15/7.5 mg IBU group, compared with 3.5 for both groups at 24 h. IBU posttreatment increased the survival of mice at 12 h by reducing PEF, lipid peroxidation, and GSH depletion. In conclusion, effective treatment of phosgene-induced lung injury involves early postexposure intervention that could reduce free radical species responsible for lipid peroxidation, correct the imbalance in the GSH redox state, and prevent the release of biological mediators such as leukotrienes, which are accountable for increased permeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08958370490442584 | DOI Listing |
Circ Res
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., J.W.A., R.L., F.N., J.S., I.C.).
Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.
Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.
Stem Cells Int
January 2025
Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Objectives: Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology.
Methods: Bioinformatics was used to identify key asthmarelated genes.
Anticancer Agents Med Chem
January 2025
Department of Basic Medical Sciences, Vision Colleges, Riyadh, 11451, Saudi Arabia.
Background: Liver fibrosis represents a serious risk to global health by impairing quality of life and elevating the chances of hepatocellular carcinoma, while the intricate role of autophagy can either alleviate or worsen fibrosis depending on its functioning.
Objective: Herein, we aimed to investigate the therapeutic effect of chlorogenic acid in CCl4-induced hepatic fibrosis and explore the autophagy pathway as the possible molecular target of chlorogenic acid.
Methods: Rats were injected with carbon tetrachloride (1ml/kg) to induce liver fibrosis for 10 weeks.
BMC Pharmacol Toxicol
January 2025
Faculty of Medicine, Department of Physiology, Istanbul Demiroglu Bilim University, Istanbul, Turkey.
Background: Diabetic neuropathy (DN) is a heterogeneous condition characterized by complex pathophysiological changes affecting both autonomic and somatic components of the nervous system. Inflammation and oxidative stress are recognized contributors to the pathogenesis of DN. This study aims to evaluate the therapeutic potential of dichloroacetic acid (DCA) in alleviating DN symptoms, focusing on its anti-inflammatory and antioxidant properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!