The efficiency of electromagnetic field treatment in Complex Regional Pain Syndrome Type I.

Disabil Rehabil

Istanbul Medical Faculty, Department of Physical Medicine and Rehabilitation, Istanbul University, Istanbul Turkey.

Published: May 2004

Introduction: Complex Regional Pain Syndrome Type I is a pathological condition that occurs without evident nerve injury and follows a course characterized by severe pain.

Purpose: The aim of this study is to assess whether or not electromagnetic field treatment administered with calcitonin and exercise has positive effects on clinical improvement, scintigraphic assessment and bone markers compared to calcitonin and exercise administration.

Method: In this randomized double-blind, placebo-controlled study, 40 patients with Complex Regional Pain Syndrome Type I, that developed after a Colles fracture were included in the assessments and were administered calcitonin and exercise treatment for 6 weeks. In addition to this treatment, half the patients received electromagnetic field treatment, and the other half received placebo treatment. The patients were evaluated at the beginning and end of treatment with clinical parameters, scintigraphic assessment and biochemical markers.

Results: Although we found some significant improvements in our evaluation criteria, we could not find a significant statistical difference between groups.

Conclusions: The absence of a significant difference between the two groups in the assessment parameters has been interpreted as evidence that electromagnetic field treatment does not provide additional benefit to calcitonin and exercise treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09638280410001683155DOI Listing

Publication Analysis

Top Keywords

electromagnetic field
16
field treatment
16
calcitonin exercise
16
complex regional
12
regional pain
12
pain syndrome
12
syndrome type
12
treatment
9
administered calcitonin
8
scintigraphic assessment
8

Similar Publications

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Revolutionizing Dual-Band Modulation and Superior Cycling Stability in GDQDs-Doped WO Electrochromic Films for Advanced Smart Window Applications.

Small

January 2025

State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity.

View Article and Find Full Text PDF

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

Simulation Study of Envelope Wave Electrical Nerve Stimulation Based on a Real Head Model.

Neuroinformatics

January 2025

Shanghai Berry Electronic Technology Co., Ltd., Shanghai, 200000, China.

In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!