In the antisaccade task subjects are required to suppress the reflexive tendency to look at a peripherally presented stimulus and to perform a saccade in the opposite direction instead. The present studies aimed at investigating the inhibitory mechanisms responsible for successful performance in this task, testing a hypothesis of parallel programming of exogenous and endogenous components: A reflexive saccade to the stimulus is automatically programmed and competes with the concurrently established voluntary programme to look in the opposite direction. The experiments followed the logic of selectively manipulating the speed of processing of these components and testing the prediction that a selective slowing of the exogenous component should result in a reduced error rate in this task, while a selective slowing of the endogenous component should have the opposite effect. The results provide evidence for the hypothesis of parallel programming and are discussed in the context of alternative accounts of antisaccade performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02724980343000341 | DOI Listing |
Philos Trans A Math Phys Eng Sci
January 2025
Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.
The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire d'Ingenierie des Systemes Physiques et Numeriques, 59046, Lille, France.
The demand for efficient Industry 4.0 systems has driven the need to optimize production systems, where effective scheduling is crucial. In smart manufacturing, robots handle material transfers, making precise scheduling essential for seamless operations.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFGigascience
January 2025
School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, MK7 6AA, UK.
Background: Bioinformatics is fundamental to biomedical sciences, but its mastery presents a steep learning curve for bench biologists and clinicians. Learning to code while analyzing data is difficult. The curve may be flattened by separating these two aspects and providing intermediate steps for budding bioinformaticians.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical and Information Engineering, Quzhou University, Quzhou, 324000, China.
A new kernel function, termed the closed-box kernel function, has been developed to address numerical simulation of transient heat conduction in the same medium. Firstly, this method is versatile and not limited to specific industrial scenarios or designated materials. Secondly, the method solves the spatial temperature at each time point only once, eliminating the need for multiple iterations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!