Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.031DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
mammalian cells
8
nadph-cytochrome p450
8
microsomal metabolism
8
metabolism
7
microsomal
5
oxide metabolism
4
metabolism mammalian
4
cells
4
cells substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!