Radiation induced chromosomal deletions at the albino locus in the mouse, lethal when homozygous, cause abnormalities of expression of several unlinked liver specific genes. Recently, the gene encoding FAH was shown to be included in the deletions. Since in humans FAH mutations cause tyrosinemia type I, deletion homozygous mice were suspected of having tyrosinemia. Studies of plasma amino acids did not confirm this suspicion. Also, succinylacetone levels were normal in fetal and newborn livers of deletion homozygotes. The present evidence, therefore, does not support the assumption that the earlier described ultrastructural and enzyme abnormalities in deletion homozygotes are secondary effects of tyrosinemia caused by the deletion of FAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(05)81498-6 | DOI Listing |
Anim Genet
February 2025
Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany.
In this study, I report an unexpected case of a Holstein calf that developed horns even though the sire was homozygous and the dam was heterozygous for polledness. After verifying and confirming the correct parentage, the parents and offspring were genotyped with the Illumina EuroG_MD BeadChip and the SNPs in the polled region on chromosome 1 were evaluated. In addition, the father was sequenced with next generation sequencing to identify possible, previously unknown variants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.
This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland.
: Neural retina leucine zipper (NRL) is a transcription factor involved in the differentiation of rod photoreceptors. Pathogenic variants in the gene encoding NRL have been associated with autosomal dominant retinitis pigmentosa and autosomal recessive clumped pigmentary retinal degeneration. Only a dozen unrelated families affected by recessive -related retinal dystrophy have been described.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Clinic for Small Animal Internal Medicine, Vetsuisse Faculty University of Zürich, 8057 Zürich, Switzerland.
In heme degradation, biliverdin reductase catalyzes the conversion of biliverdin to bilirubin. Defects in the biliverdin reductase A gene () causing biliverdinuria are extraordinarily rare in humans, and this inborn error of metabolism has not been reported in other mammals. The objective of this study was to diagnose biliverdinuria and identify the causal variants in two adult mixed-breed dogs with life-long green urine.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy.
Background: The KHDC3L gene encodes a component of the subcortical maternal complex (SCMC). Biallelic mutations in this gene cause 5%-10% of biparental hydatidiform moles (BiHM), and a few maternal deletions in KHDC3L have been identified in women with recurrent pregnancy loss (RPL).
Method: In this study, we had a patient with a history of 10 pregnancy or neonatal losses, including spontaneous abortions, neonatal deaths, and molar pregnancy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!