A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of substrate curvature in actin-based pushing forces. | LitMetric

The role of substrate curvature in actin-based pushing forces.

Curr Biol

Department of Biomedical Engineering, University of Rochester, 601 Elmwood Avenue, P.O. Box 639, Rochester, NY 14642 USA.

Published: June 2004

The extension of the plasma membrane during cell crawling or spreading is known to require actin polymerization; however, the question of how pushing forces derive from actin polymerization remains open. A leading theory (herein referred to as elastic propulsion) illustrates how elastic stresses in networks growing on curved surfaces can result in forces that push particles. To date all examples of reconstituted motility have used curved surfaces, raising the possibility that such squeezing forces are essential for actin-based pushing. By contrast, other theories, such as molecular ratchets, neither require nor consider surface curvature to explain pushing forces. Here, we critically test the requirement of substrate curvature by reconstituting actin-based motility on polystyrene disks. We find that disks move through extracts in a manner that indicates pushing forces on their flat surfaces and that disks typically move faster than the spheres they are manufactured from. For a subset of actin tails that form on the perimeter of disks, we find no correlation between local surface curvature and tail position. Collectively the data indicate that curvature-dependent mechanisms are not required for actin-based pushing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2004.06.023DOI Listing

Publication Analysis

Top Keywords

pushing forces
16
actin-based pushing
12
substrate curvature
8
actin polymerization
8
curved surfaces
8
surface curvature
8
disks find
8
pushing
6
forces
6
role substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!