Monitoring aggregate formation in organotypic slice cultures from transgenic mice.

Methods Mol Biol

Department of Medical and Molecular Genetics, GKT School of Medicine, King's College, Guy's Hospital, London, UK.

Published: September 2004

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HD gene. It encodes a protein known as huntingtin, which aggregates in the nuclei of affected neurons. These aggregates are an obvious therapeutic target, thus an organotypic slice culture assay has been designed to screen potential antiaggregation compounds using the R6/2 mouse model of HD. This assay allows the aggregates to be fully quantified using fluorescent confocal microscopy and gives additional information perturbing to drug solubility, delivery, toxicity, concentration, and efficacy of inhibitors. This information is essential to the planning and application of an in vivo drug trial in the R6/2 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-804-8:161DOI Listing

Publication Analysis

Top Keywords

organotypic slice
8
monitoring aggregate
4
aggregate formation
4
formation organotypic
4
slice cultures
4
cultures transgenic
4
transgenic mice
4
mice huntington's
4
huntington's disease
4
disease fatal
4

Similar Publications

Fibrosis in PCLS: comparing TGF-β and fibrotic cocktail.

Respir Res

January 2025

Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Introduction: Fibrotic cocktail (FC) is a combination of pro-fibrotic and pro-inflammatory mediators that induces early fibrotic changes in organotypic lung models. We hypothesised that transforming growth factor beta 1 (TGF-β1) alone induces a pro-fibrotic effect similar to FC. Our aim was to compare the pro-fibrotic effects of TGF-β1 with FC in human precision-cut lung slices (PCLS).

View Article and Find Full Text PDF

The idea of self-organized signal processing in the cerebral cortex has become a focus of research since Beggs and Plentz reported avalanches in local field potential recordings from organotypic cultures and acute slices of rat somatosensory cortex. How the cortex intrinsically organizes signals remains unknown. A current hypothesis was proposed by the condensed matter physicists Bak, Tang, and Wiesenfeld when they conjectured that if neuronal avalanche activity followed inverse power law distributions, then brain activity may be set around phase transitions within self-organized signals.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.

J Vis Exp

December 2024

The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;

Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!