We examined the capacity for physiological recovery from the effects of desiccation in five replicate populations of Drosophila melanogaster that have been selected for enhanced desiccation resistance (D populations) and in five replicate control populations (C populations). The capacity to recover was signified by the ability to restore three somatic components, namely whole-body water, dry mass and sodium content, all of which are reduced during desiccation. Throughout a period of recovery following a bout of desiccation, the flies were offered one of three fluids: distilled water, saline solution, or saline+sucrose solution. Our findings indicate that, when allowed to recover on saline+sucrose solution, D populations have the capacity to restore water at a greater rate than C populations and are able to fully restore dry mass and sodium content to the levels observed in non-desiccated, hydrated D flies. When provided with this same solution during recovery, C flies are unable to restore dry mass and are faced with an elevated sodium load. Desiccation resistance of the flies subsequent to recovery was also examined. We provide evidence that the greatest desiccation resistance in the D populations is associated with the restoration of all three somatic components, suggesting that not only water content, but also dry mass and sodium, may contribute to the enhanced desiccation resistance that has evolved in these populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01048 | DOI Listing |
BMC Microbiol
January 2025
Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Carbapenem resistant Acinetobacter baumannii has evolved as the most troublesome microorganism with multiple virulence factors. Biofilm formation, porins, micronutrient capturing mechanism and quorum sensing, provide protection against desiccation, host-pathogen killing and enhance its persistence. The conservation of these factors between colonizing and pathogenic carbapenem resistant A.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
, an opportunistic foodborne pathogen, has a strong resistance to osmotic stress and desiccation stress, but the current studies cannot elucidate this resistance mechanism absolutely. A mechanosensitive channel MscM was suspected of involving to desiccation resistance mechanism of To investigate the specific molecular mechanism, the mutant strain (Δ) was constructed using the homologous recombination method, and the complementary strain was obtained by gene complementation, followed by the analysis of the difference between the wild-type (WT), mutant, and complementary strains. Compared to the wild-type bacteria (WT), the inactivation rate of the Δ strain decreased by 15.
View Article and Find Full Text PDFPathogens
November 2024
Guangzhou CnFerment Biotechnology Co., Ltd., Guangzhou 510440, China.
Gram-negative bacteria possess an asymmetric outer membrane, where the outer leaflet consists of LPSs and the inner leaflet comprises phospholipids. , an opportunistic milk-borne pathogen that causes severe neonatal meningitis and bacteremia, displays diverse lipopolysaccharide (LPS) structures. As a barrier of the bacterial cell, LPSs likely influenced resistance to environment stresses; however, there are no research reports on this aspect, hindering the development of novel bactericidal strategies overcoming the pathogen's resilience.
View Article and Find Full Text PDFTree Physiol
January 2025
Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki 319-1301, Japan.
The selection of plant genotypes characterized by wellness and stable growth under drought-stress conditions amid ongoing climate change is an important challenge in forest tree breeding. The introduction of molecular markers will enable efficient selection of breeding materials that are resistant to drought stress in forest trees as well as in crop species. Japanese cedar, Cryptomeria japonica, the most dominant forest species in Japan, grows well on mesic sites and is characterized by intraspecific variation in its drought-stress response.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!