Escherichia coli NeuNAc (N-acetylneuraminic acid) synthase catalyses the condensation of PEP (phosphoenolpyruvate) and ManNAc (N-acetylmannosamine) to form NeuNAc and is encoded by the neuB gene. Campylobacter jejuni has three neuB genes, one of which is very similar to the E. coli neuB gene. We have characterized the C. jejuni neuraminic acid synthase with respect to acylamino sugar specificity and stereochemistry of the PEP condensation. We determined the specificity of C. jejuni NeuNAc synthase for N-acetylmannosamine, N-butanoylmannosamine, N-propionoylmannosamine and N-pentanoylmannosamine. We find that, although this enzyme exhibits similar K(m) values for N-acylmannosamine molecules with different N-acyl groups, the kcat/K(m) values decreased with increasing chain length. NeuNAc synthase is a member of a PEP-utilizing family of enzymes that form oxo acids from PEP and a monosaccharide. This family includes KDO 8-P (2-keto-3-deoxy-D-manno-octulosonate 8-phosphate) synthase and DAH 7-P (2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate) synthase. Both enzymes catalyse the condensation of the re face of the aldehyde group of the monosaccharide with the si face of the PEP molecule. The C. jejuni NeuNAc synthase catalysed the condensation of Z- and E-[3-2H]PEP with ManNAc, yielding (3S)-3-deutero-NeuNAc and (3R)-3-deutero-NeuNAc respectively. The condensation of Z-[3-F]PEP and ManNAc yielded (3S)-3-fluoro-NeuNAc. Results of our studies suggest that the C. jejuni NeuNAc synthase, similar to KDO 8-P synthase and DAH 7-P synthase, catalyses the condensation of the si face of PEP with the aldehyde sugar. The present study is the first stereochemical analysis of the reaction catalysed by a bacterial NeuNAc synthase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134046PMC
http://dx.doi.org/10.1042/BJ20040218DOI Listing

Publication Analysis

Top Keywords

neunac synthase
20
synthase
12
acid synthase
12
jejuni neunac
12
n-acetylneuraminic acid
8
campylobacter jejuni
8
synthase catalyses
8
catalyses condensation
8
neub gene
8
kdo 8-p
8

Similar Publications

Background: In NANS deficiency, biallelic mutations in the -acetylneuraminic acid synthase () gene impair the endogenous synthesis of sialic acid (-acetylneuraminic acid) leading to accumulation of the precursor, -acetyl mannosamine (ManNAc), and to a multisystemic disorder with intellectual disability. The aim of this study was to determine whether sialic acid supplementation might be a therapeutic avenue for NANS-deficient patients.

Methods: Four adults and two children with NANS deficiency and four adult controls received oral NeuNAc acid (150 mg/kg/d) over three days.

View Article and Find Full Text PDF

Generation of an NANS homozygous knockout human induced pluripotent stem cell line by the insertion of GFP-P2A-Puro via CRISPR/Cas9 editing.

Stem Cell Res

December 2020

National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.

N-acetylneuraminic acid synthase (NANS), the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), is closely associated with infantile-onset severe developmental delay and skeletal dysplasia. However, the role and the involved mechanisms of NANS functioning have not been fully understood to date. Here, we generated a homozygous NANS-knockout human induced pluripotent stem cell (iPSC) line, NCCSEDi001-A-1, via the CRISPR/Cas9-based gene editing method.

View Article and Find Full Text PDF

NeuB is a bacterial sialic acid synthase used by neuroinvasive bacteria to synthesize -acetylneuraminate (NeuNAc), helping them to evade the host immune system. NeuNAc oxime is a potent slow-binding NeuB inhibitor. It dissociated too slowly to be detected experimentally, with initial estimates of its residence time in the active site being >47 days.

View Article and Find Full Text PDF

A homozygous mutation in CMAS causes autosomal recessive intellectual disability in a Kazakh family.

Ann Hum Genet

January 2020

State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.

Intellectual disability (ID) describes a wide range of serious human diseases caused by defects in central nervous system development and function. Some mutant genes have been found to be associated with these diseases, but not all cases can be explained, thus suggesting that other disease-causing genes have not yet been discovered. Sialic acid is involved in a number of key biological processes, including embryo formation, nerve cell growth, and cancer cell metastasis, and very recently it has been suggested that N-acetylneuraminic acid synthase-mediated synthesis of sialic acid is required for brain and skeletal development.

View Article and Find Full Text PDF

Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways.

Biotechnol Lett

January 2017

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.

Objective: To develop a strategy for producing N-acetyl-D-neuraminic acid (Neu5Ac), which is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and pyruvate, but without using pyruvate.

Result: An efficient three-module whole-cell biocatalyst strategy for Neu5Ac production by utilizing intracellular phosphoenolpyruvate was established. In module I, the synthetic pathway was constructed by coexpressing GlcNAc 2-epimerase from Anabaena sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!