Tissue transglutaminase (TG2) affects cell-matrix interactions in cell spreading, migration and extracellular matrix (ECM) reorganisation. Using fibroblasts deficient in TG2 or overexpressing normal or crosslinking-deficient enzyme, we show that the extracellular crosslinking activity and intracellular G-protein function in signal transduction contribute differentially to regulation of cell-matrix interactions. TG2-deficient cells displayed normal attachment but delayed spreading on ECM substrata and defects in motility unrelated to crosslinking. Blocking antibodies to TG2 failed to induce similar defects in normal fibroblasts. TG2-deficient fibroblasts had defects in focal adhesion turnover and stress fibre formation, showed changes in focal adhesion kinase (FAK) phosphorylation and failed to activate protein kinase C alpha (PKCalpha). Phospholipase C (PLC) and PKCalpha inhibitors blocked spreading of normal fibroblasts whilst PKC activators induced spreading in TG2-deficient cells. In contrast, ECM remodelling was not only compromised by TG2 deficiency but also by overexpression of dominant negative enzyme and TG inhibitors. TG2 activity increased matrix tension and was required for membrane type 1-MMP (MT1-MMP)-dependent activation of MMP-2. Our results demonstrate that TG2 is involved in the control of dynamic adhesion formation in cell spreading and migration via regulation of phospholipase C activity. By virtue of its crosslinking activity, the enzyme plays a central role in regulating ECM remodelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.01188 | DOI Listing |
PLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.
Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.
Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.
Hortic Res
January 2025
Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.
Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!