Myoblasts transplanted into muscles of recipient mice mostly die, only a minor stem cell-like subpopulation surviving and participating in muscle regeneration. To investigate this phenomenon further, we used a retrovirus expressing beta-galactosidase to provide a unique marker for satellite-cell-derived muscle precursor cells, before transplanting them into myopathic mdx nu/nu mouse muscle. We employed inverse polymerase chain reaction to identify viral integrations, to follow the fate of clones present within the injected cells. Mass-infected cultures contained many marked clones, some of which contributed disproportionately to muscle regeneration. Although no particular clones showed overall predominance, some were present in more than one injected muscle, an eventuality unlikely to arise by chance. Conversely, in grafts of muscle precursor cells that had either been labelled as sparse satellite-cell derived cultures, or had been cloned, all clones were shown to be able to survive and form muscle in vivo. Moreover, all clones contributed to further generations of new-formed muscle fibres following a series of injuries administered to injected muscles, demonstrating that some cells of each clone had been retained as stem-cell-like muscle precursors. Furthermore, retrovirally marked satellite-cell-derived clones were derived from muscles that had been injected with marked muscle precursor cells. These cells formed muscle following their transplantation into a new host mouse, confirming their stem cell properties.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.01161DOI Listing

Publication Analysis

Top Keywords

muscle
12
muscle precursor
12
precursor cells
12
muscle regeneration
8
clones contributed
8
cells
6
clones
6
regeneration skeletal
4
skeletal muscle
4
muscle transplanted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!