Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute nitric oxide (NO) inhibits angiotensin II (ANG II)-stimulated aldosterone synthesis in zona glomerulosa (ZG) cells. In this study, we investigated the effects of chronic administration of NO on the ANG II receptor type 1 (AT1) expression and aldosterone synthesis. ZG cells were treated daily with DETA NONOate (10(-4) M), an NO donor, for 0, 12, 24, 48, 72, and 96 h. Chinese hamster ovary (CHO) cells, stably transfected with the AT1B receptor, were used as a positive control. Western blot analysis indicated that AT1 receptor expression was decreased as a function of time of NO administration in both CHO and ZG cells. ANG II binding to its receptors was determined by radioligand binding. NO treatment of ZG cells for 96 h resulted in a decrease in ANG II binding compared with control. The receptor density was decreased to 1,864 +/- 129 fmol/mg protein from 3,157 +/- 220 fmol/mg protein (P < 0.005), but the affinity was not changed (1.95 +/- 0.22 vs. 1.88 +/- 0.21 nM). Confocal Raman microspectroscopy and immunocytochemistry both confirmed that the expression of AT1 receptors in ZG cells decreased with chronic NO administration. In addition, chronic NO administration also decreased the expression of cholesterol side-chain cleavage enzyme in ZG cells and inhibited ANG II- and 25-hydroxycholesterol-stimulated aldosterone synthesis in ZG cells. This study demonstrates that chronic administration of NO inhibits aldosterone synthesis in ZG cells by downregulation of the expression of both AT1 receptors and cholesterol side-chain cleavage enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00183.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!