Expression of FOXC2 in adipose and muscle and its association with whole body insulin sensitivity.

Am J Physiol Endocrinol Metab

The Central Arkansas Veterans Healthcare System, Department of Medicine, Little Rock 72205, USA.

Published: October 2004

FOXC2 is a winged helix/forkhead transcription factor involved in PKA signaling. Overexpression of FOXC2 in the adipose tissue of transgenic mice protected against diet-induced obesity and insulin resistance. We examined the expression of FOXC2 in fat and muscle of nondiabetic humans with varying obesity and insulin sensitivity. There was no relation between body mass index (BMI) and FOXC2 mRNA in either adipose or muscle. There was a strong inverse relation between adipose FOXC2 mRNA and insulin sensitivity, using the frequently sampled intravenous glucose tolerance test (r = -0.78, P < 0.001). However, there was no relationship between muscle FOXC2 and any measure of insulin sensitivity. To separate insulin resistance from obesity, we examined FOXC2 expression in pairs of subjects who were matched for BMI but who were discordant for insulin sensitivity. Compared with insulin-sensitive subjects, insulin-resistant subjects had threefold higher levels of adipose FOXC2 mRNA (P = 0.03). In contrast, muscle FOXC2 mRNA expression was no different between insulin-resistant and insulin-sensitive subjects. There was no association of adipose or muscle FOXC2 mRNA with either circulating or adipose-secreted TNF-alpha, IL-6, leptin, adiponectin, or non-esterified fatty acids. Thus adipose FOXC2 is more highly expressed in insulin-resistant subjects, and this effect is independent of obesity. This association between FOXC2 and insulin resistance may be related to the role of FOXC2 in PKA signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00155.2004DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
20
foxc2 mrna
20
foxc2
13
adipose muscle
12
insulin resistance
12
adipose foxc2
12
muscle foxc2
12
expression foxc2
8
foxc2 adipose
8
insulin
8

Similar Publications

It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.

Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.

View Article and Find Full Text PDF

: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of fertile age. Some studies suggest that a ketogenic diet (KD) may have a role in treating PCOS. We aimed to demonstrate the long-term effectiveness of a KD in PCOS.

View Article and Find Full Text PDF

Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation.

View Article and Find Full Text PDF

Cathelicidin: Insights into Its Impact on Metabolic Syndrome and Chronic Inflammation.

Metabolites

December 2024

Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania.

: LL-37 is associated with metabolic syndrome (MetS), a constellation of risk factors comprising obesity, insulin resistance (IR), dyslipidemia, and hypertension, which elevates the risk of cardiovascular disease and type 2 diabetes. : In this narrative review, we analyzed the literature focusing on recent developments in the relationship between cathelicidin and various components of MetS to provide a comprehensive overview. : Studies have shown that LL-37 is linked to inflammation in adipose tissue (AT) and the development of IR in obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!