Alx4 and Msx2 encode homeodomain-containing transcription factors that show a clear functional overlap. In both mice and humans, loss of function of either gene is associated with ossification defects of the skull vault, although the major effect is on the frontal bones in mice and the parietal bones in humans. This study was undertaken to discover whether Alx4 and Msx2 show a genetic interaction in skull vault ossification, and to test the hypothesis that they interact with the pathway that includes the Fgfr genes, Twist1 and Runx2. We generated Alx4(+/-)/Msx2(+/-) double heterozygous mutant mice, interbred them to produce compound genotypes and analysed the genotype-phenotype relationships. Loss of an increasing number of alleles correlated with an incremental exacerbation of the skull vault defect; loss of Alx4 function had a marginally greater effect than loss of Msx2 and also affected skull thickness. In situ hybridization showed that Alx4 and Msx2 are expressed in the cranial skeletogenic mesenchyme and in the growing calvarial bones. Studies of the coronal suture region at embryonic day (E)16.5 revealed that Alx4 expression was decreased, but not abolished, in Msx2(-/-) mutants, and vice versa; expression of Fgfr2 and Fgfr1, but not Twist1, was reduced in both mutants at the same stage. Runx2 expression was unaffected in the coronal suture; in contrast, expression of the downstream ossification marker Spp1 was delayed. Double homozygous pups showed substantial reduction of alkaline phosphatase expression throughout the mineralized skull vault; they died at birth due to defects of the heart, lungs and diaphragm not previously associated with Alx4 or Msx2. Our observations suggest that Alx4 and Msx2 are partially functionally redundant, acting within a network of transcription factors and signalling events that regulate the rate of osteogenic proliferation and differentiation at a stage after the commitment of mesenchymal stem cells to osteogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571319PMC
http://dx.doi.org/10.1111/j.0021-8782.2004.00304.xDOI Listing

Publication Analysis

Top Keywords

alx4 msx2
24
skull vault
20
alx4
8
transcription factors
8
coronal suture
8
skull
6
msx2
6
vault
5
expression
5
msx2 play
4

Similar Publications

Foramina parietalia permagna (FPP) is a rare anatomical defect that affects the parietal bones of the human skull. FPP is characterized by symmetric perforations on either side of the skull, which are caused by insufficient ossification during embryogenesis. These openings are typically abnormally large and can range from a few millimeters to several centimeters in diameter.

View Article and Find Full Text PDF

Transcriptional changes in chick wing bud polarization induced by retinoic acid.

Dev Dyn

September 2017

Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.

Background: Retinoic acid is implicated in the induction of the gene encoding Sonic hedgehog (Shh) that specifies anteroposterior positional values and promotes growth of the developing limb bud. However, because retinoic acid is involved in limb initiation, it has been difficult to determine if it could have additional roles in anteroposterior patterning. To investigate this, we implanted retinoic acid-soaked beads to the anterior margin of the chick wing bud and performed microarray analyses prior to onset of Shh expression.

View Article and Find Full Text PDF

Objective: To evaluate whether lack of Dicer during calvaria development would lead to dysmorphology of calvaria and suture closure in mice.

Materials And Methods: A conditional Dicer deficient under Osx promoter mouse was employed in this study. The 4- and 10-week-old conditional Dicer-deficient mice control littermates and Osx-cre transgenic mice were studied for calvarial bone morphology and suture closure.

View Article and Find Full Text PDF

Enlarged parietal foramina (EPF) are rare congenital skull defects. These round or oval defects are situated on each parietal bone approximately 1 cm from the midline. Most patients with EPF have a positive family history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!