Substituent effects in pi-pi interactions: sandwich and T-shaped configurations.

J Am Chem Soc

Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

Published: June 2004

Sandwich and T-shaped configurations of benzene dimer, benzene-phenol, benzene-toluene, benzene-fluorobenzene, and benzene-benzonitrile are studied by coupled-cluster theory to elucidate how substituents tune pi-pi interactions. All substituted sandwich dimers bind more strongly than benzene dimer, whereas the T-shaped configurations bind more or less favorably depending on the substituent. Symmetry-adapted perturbation theory (SAPT) indicates that electrostatic, dispersion, induction, and exchange-repulsion contributions are all significant to the overall binding energies, and all but induction are important in determining relative energies. Models of pi-pi interactions based solely on electrostatics, such as the Hunter-Sanders rules, do not seem capable of explaining the energetic ordering of the dimers considered.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja049434aDOI Listing

Publication Analysis

Top Keywords

pi-pi interactions
12
t-shaped configurations
12
sandwich t-shaped
8
benzene dimer
8
substituent effects
4
effects pi-pi
4
interactions sandwich
4
configurations sandwich
4
configurations benzene
4
dimer benzene-phenol
4

Similar Publications

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).

View Article and Find Full Text PDF

The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.

View Article and Find Full Text PDF

A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!