Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The solution-phase reactions of octadecylsilane (C(18)H(37)SiH(3)) with 10 high surface area metal oxides (groups II-VIII) were investigated. C(18)H(37)SiH(3) reacted with most metal oxides at room temperature and produced supported monolayers (self-assembled monolayers, SAMs) with a high grafting density of C(18), approximately 4.5-5 groups/nm(2). According to the FTIR and (29)Si NMR spectra, molecules in the SAMs demonstrated "horizontal" cross-linking (Si-O-Si and Si-OH.HO-Si bonds) and little or no "vertical" bonds with the metal oxide forming an amorphous, yet ordered film. Also, approximately 3 mol of H(2) was formed per each mole of grafted C(18), indicating complete hydrolysis of C(18)H(37)SiH(3) during the reaction. On the basis of the activity of different metal oxides, we concluded that the hydrolysis of C(18)H(37)SiH(3), the key step in the reaction mechanism, is catalyzed by water adsorbed on acidic and basic centers (Lewis and Brönsted) of the surface of metal oxide. Metal oxides and solids with weak acidic and basic properties, like silica, carbon, and organic polymers, do not react with C(18)H(37)SiH(3). Increasing the temperature of the reaction or doping neutral surfaces with acids or bases greatly increases their activity in the reaction with RSiH(3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0498336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!